Wind Load Characteristics in Libya

Recent trends in building constructions in Libya are more toward tall (high-rise) building projects. As a consequence, a better estimation of the lateral loading in the design process is becoming the focal of a safe and cost effective building industry. Byin- large, Libya is not considered a potential earthquake prone zone, making wind is the dominant design lateral loads. Current design practice in the country estimates wind speeds on a mere random bases by considering certain factor of safety to the chosen wind speed. Therefore, a need for a more accurate estimation of wind speeds in Libya was the motivation behind this study. Records of wind speed data were collected from 22 metrological stations in Libya, and were statistically analysed. The analysis of more than four decades of wind speed records suggests that the country can be divided into four zones of distinct wind speeds. A computer “survey" program was manipulated to draw design wind speeds contour map for the state of Libya. The paper presents the statistical analysis of Libya-s recorded wind speed data and proposes design wind speed values for a 50-year return period that covers the entire country.

Performance Analysis of Software Reliability Models using Matrix Method

This paper presents a computational methodology based on matrix operations for a computer based solution to the problem of performance analysis of software reliability models (SRMs). A set of seven comparison criteria have been formulated to rank various non-homogenous Poisson process software reliability models proposed during the past 30 years to estimate software reliability measures such as the number of remaining faults, software failure rate, and software reliability. Selection of optimal SRM for use in a particular case has been an area of interest for researchers in the field of software reliability. Tools and techniques for software reliability model selection found in the literature cannot be used with high level of confidence as they use a limited number of model selection criteria. A real data set of middle size software project from published papers has been used for demonstration of matrix method. The result of this study will be a ranking of SRMs based on the Permanent value of the criteria matrix formed for each model based on the comparison criteria. The software reliability model with highest value of the Permanent is ranked at number – 1 and so on.

Estimation of Broadcast Probability in Wireless Adhoc Networks

Most routing protocols (DSR, AODV etc.) that have been designed for wireless adhoc networks incorporate the broadcasting operation in their route discovery scheme. Probabilistic broadcasting techniques have been developed to optimize the broadcast operation which is otherwise very expensive in terms of the redundancy and the traffic it generates. In this paper we have explored percolation theory to gain a different perspective on probabilistic broadcasting schemes which have been actively researched in the recent years. This theory has helped us estimate the value of broadcast probability in a wireless adhoc network as a function of the size of the network. We also show that, operating at those optimal values of broadcast probability there is at least 25-30% reduction in packet regeneration during successful broadcasting.

Employee Loyalty and Telecommuting

Telecommuting has become an increasingly popular work arrangement. However, little research has examined the impact of telecommuting on the relationship between employees and the organization. This study aims to shed light on this aspect by comparing the loyalty of telecommuters and non telecommuters as it can be viewed from three angles: organizational loyalty, peer loyalty, and professional loyalty. Furthermore, this paper will explore the dynamics among employee loyalty, productivity, and job satisfaction. Whereas previous studies had looked on employees that are not fully telecommuting, the current study concentrates on employees that are exclusively working from home.

A Systematic Construction of Instability Bounds in LIS Networks

In this work, we study the impact of dynamically changing link slowdowns on the stability properties of packetswitched networks under the Adversarial Queueing Theory framework. Especially, we consider the Adversarial, Quasi-Static Slowdown Queueing Theory model, where each link slowdown may take on values in the two-valued set of integers {1, D} with D > 1 which remain fixed for a long time, under a (w, p)-adversary. In this framework, we present an innovative systematic construction for the estimation of adversarial injection rate lower bounds, which, if exceeded, cause instability in networks that use the LIS (Longest-in- System) protocol for contention-resolution. In addition, we show that a network that uses the LIS protocol for contention-resolution may result in dropping its instability bound at injection rates p > 0 when the network size and the high slowdown D take large values. This is the best ever known instability lower bound for LIS networks.

Multi-Context Recurrent Neural Network for Time Series Applications

this paper presents a multi-context recurrent network for time series analysis. While simple recurrent network (SRN) are very popular among recurrent neural networks, they still have some shortcomings in terms of learning speed and accuracy that need to be addressed. To solve these problems, we proposed a multi-context recurrent network (MCRN) with three different learning algorithms. The performance of this network is evaluated on some real-world application such as handwriting recognition and energy load forecasting. We study the performance of this network and we compared it to a very well established SRN. The experimental results showed that MCRN is very efficient and very well suited to time series analysis and its applications.

Effect of Twelve Weeks Brisk Walking on Blood Pressure, Body Mass Index, and Anthropometric Circumference of Obese Males

Introduction: Obesity is a major health risk issue in the present day of life for one and all globally. Obesity is one of the major concerns for public health according to recent increasing trends in obesity-related diseases such as Type 2 diabetes. ( Kazuya, 1994).and hyperlipidemia, (Sakata,1990) .which are more prevalent in Japanese adults with body mass index (BMI) values Z25 kg/m2.( Japanese Ministry of Health and Welfare,1997). The purpose of the study was to assess the effect of twelve weeks of brisk walking on blood pressure and body mass index, anthropometric measurements of obese males. Method: Thirty obese (BMI= above 30) males, aged 18 to 22 years, were selected from King Fahd University of Petroleum & Minerals, Saudi Arabia. The subject-s height (cm) was measured using a stadiometer and body mass (kg) was measured with a electronic weighing machine. BMI was subsequently calculated (kg/m2). The blood pressure was measured with standardized sphygmomanometer in mm of Hg. All the measurements were taken twice before and twice after the experimental period. The pre and post anthropometric measurements of waist and hip circumference were measured with the steel tape in cm. The subjects underwent walking schedule two times in a week for 12 weeks. The 45 minute sessions of brisk walking were undertaken at an average intensity of 65% to 85% of maximum HR (HRmax; calculated as 220-age). Results & Discussion: Statistical findings revealed significant changes from pre test to post test in case of both systolic blood pressure and diastolic blood pressure in the walking group. Results also showed significant decrease in their body mass index and anthropometric measurements i.e. (waist & hip circumference). Conclusion: It was concluded that twelve weeks brisk walking is beneficial for lowering of blood pressure, body mass index, and anthropometric circumference of obese males.

Integrating Process Planning and Scheduling for Prismatic Parts Regard to Due Date

Integration of process planning and scheduling functions is necessary to achieve superior overall system performance. This paper proposes a methodology for integration of process planning and scheduling for prismatic component that can be implemented in a company with existing departments. The developed model considers technological constraints whereas available time for machining in shop floor is the limiting factor to produce multiple process plan (MPP). It takes advantage of MPP while guarantied the fulfillment of the due dates via using overtime. This study has been proposed to determinate machining parameters, tools, machine and amount of over time within the minimum cost objective while overtime is considered for this. At last the illustration shows that the system performance is improved by as measured by cost and compatible with due date.

Collective Oscillations in a Magnetized Plasma Subjected to a Radiation Field

In this paper we discuss the behaviour of the longitudinal modes of a magnetized non collisional plasma subjected to an external electromagnetic field. We apply a semiclassical formalism, with the electrons being studied in a quantum mechanical viewpoint whereas the electromagnetic field in the classical context. We calculate the dielectric function in order to obtains the modes and found that, unlike the Bernstein modes, the presence of radiation induces oscillations around the cyclotron harmonics, which are smoothed as the energy stored in the radiation field becomes small compared to the thermal energy of the electrons. We analyze the influence of the number of photon involved in the electronic transitions between the Landau levels and how the parameters such as the external fields strength, plasma density and temperature affect the dispersion relation

Discrete Polyphase Matched Filtering-based Soft Timing Estimation for Mobile Wireless Systems

In this paper we present a soft timing phase estimation (STPE) method for wireless mobile receivers operating in low signal to noise ratios (SNRs). Discrete Polyphase Matched (DPM) filters, a Log-maximum a posterior probability (MAP) and/or a Soft-output Viterbi algorithm (SOVA) are combined to derive a new timing recovery (TR) scheme. We apply this scheme to wireless cellular communication system model that comprises of a raised cosine filter (RCF), a bit-interleaved turbo-coded multi-level modulation (BITMM) scheme and the channel is assumed to be memory-less. Furthermore, no clock signals are transmitted to the receiver contrary to the classical data aided (DA) models. This new model ensures that both the bandwidth and power of the communication system is conserved. However, the computational complexity of ideal turbo synchronization is increased by 50%. Several simulation tests on bit error rate (BER) and block error rate (BLER) versus low SNR reveal that the proposed iterative soft timing recovery (ISTR) scheme outperforms the conventional schemes.

The Appropriate Time Required for Newborn Calf Camel to Get Optimal Amount of Colostrums Immunoglobulin (IgG) with Relation to Levels of Cortisol and Thyroxin

A major challenge in camel productivity is the high mortality rate of camel calves in the early stage due to the lack of colostrums. This study investigates the time required for the calves to obtain the optimum amount of the immunoglobulin (IgG). Eleven pregnant female camels (Camelus Dromedarus) were selected randomly and variant in age and gestation. After delivery, 7 calves were obtained and used for this investigation. Colostrum samples were collected from mothers immediately after parturition. Blood samples were obtained from the calves as follow: 0 day (before suckling), 24, 48, 72, 96, 120 and 144 hours, 2nd, 3rd, and 4th weeks post suckling. Blood serum and colostrums whey were separated and used to determine IgG concentration, total protein and concentration of Cortisol and Thyroxin. The results showed high levels of IgG in camel colostrums (328.8 ± 4.5 mg / ml). The IgG concentration in serum of calves was the highest within 1st 24 h after suckling (140.75 mg /ml), and then declined gradually reached lower level at 144 h (41.97 mg / ml). The average turnover rate (t 1/2) of serum IgG in the all cases was 3.22 days. The turnover of ranged from 2.56 days for calves have values of IgG more than average and 7.7 days for those with values below average. In spite of very high levels of thyroxin in sera of new born the results showed no correlation between cortisol and thyroxin with IgG levels.

Project Complexity Indices based on Topology Features

The heuristic decision rules used for project scheduling will vary depending upon the project-s size, complexity, duration, personnel, and owner requirements. The concept of project complexity has received little detailed attention. The need to differentiate between easy and hard problem instances and the interest in isolating the fundamental factors that determine the computing effort required by these procedures inspired a number of researchers to develop various complexity measures. In this study, the most common measures of project complexity are presented. A new measure of project complexity is developed. The main privilege of the proposed measure is that, it considers size, shape and logic characteristics, time characteristics, resource demands and availability characteristics as well as number of critical activities and critical paths. The degree of sensitivity of the proposed measure for complexity of project networks has been tested and evaluated against the other measures of complexity of the considered fifty project networks under consideration in the current study. The developed measure showed more sensitivity to the changes in the network data and gives accurate quantified results when comparing the complexities of networks.

Cascaded ANN for Evaluation of Frequency and Air-gap Voltage of Self-Excited Induction Generator

Self-Excited Induction Generator (SEIG) builds up voltage while it enters in its magnetic saturation region. Due to non-linear magnetic characteristics, the performance analysis of SEIG involves cumbersome mathematical computations. The dependence of air-gap voltage on saturated magnetizing reactance can only be established at rated frequency by conducting a laboratory test commonly known as synchronous run test. But, there is no laboratory method to determine saturated magnetizing reactance and air-gap voltage of SEIG at varying speed, terminal capacitance and other loading conditions. For overall analysis of SEIG, prior information of magnetizing reactance, generated frequency and air-gap voltage is essentially required. Thus, analytical methods are the only alternative to determine these variables. Non-existence of direct mathematical relationship of these variables for different terminal conditions has forced the researchers to evolve new computational techniques. Artificial Neural Networks (ANNs) are very useful for solution of such complex problems, as they do not require any a priori information about the system. In this paper, an attempt is made to use cascaded neural networks to first determine the generated frequency and magnetizing reactance with varying terminal conditions and then air-gap voltage of SEIG. The results obtained from the ANN model are used to evaluate the overall performance of SEIG and are found to be in good agreement with experimental results. Hence, it is concluded that analysis of SEIG can be carried out effectively using ANNs.

The Index of Sustainable Functionality: An Application for Measuring Sustainability

The index of sustainable functionality (ISF) is an adaptive, multi-criteria technique that is used to measure sustainability; it is a concept that can be transposed to many regions throughout the world. An ISF application of the Southern Regional Organisation of Councils (SouthROC) in South East Queensland (SEQ) – the fastest growing region in Australia – indicated over a 25 year period an increase of over 10% level of functionality from 58.0% to 68.3%. The ISF of SouthROC utilised methodologies that derived from an expert panel based approach. The overall results attained an intermediate level of functionality which amounted to related concerns of economic progress and lack of social awareness. Within the region, a solid basis for future testing by way of measured changes and developed trends can be established. In this regard as management tool, the ISF record offers support for regional sustainability practice and decision making alike. This research adaptively analyses sustainability – a concept that is lacking throughout much of the academic literature and any reciprocal experimentation. This lack of knowledge base has been the emphasis of where future sustainability research can grow from and prove useful in rapidly growing regions. It is the intentions of this research to help further develop the notions of index-based quantitative sustainability.

Analysis of Influenza Cases and Seasonal Index in Thailand

This study investigated the pattern and seasonal index of influenza cases in Thailand. Our results showed that southern Thailand had the highest influenza incidence among the four regions of Thailand (i.e. north, northeast, central and southern Thailand). The influenza pattern in southern Thailand was similar to that of northeastern Thailand. Seasonal index values of influenza cases in Thailand were higher in the hot season than in the wet season. Influenza cases started to increase at the beginning of the hot season (April), reached a maximum in August, rapidly declined in the middle of the wet season and reached the lowest value in December. Seasonal index values for northern Thailand differed from other regions of Thailand.

The Core and Shapley Function for Games on Augmenting Systems with a Coalition Structure

In this paper, we first introduce the model of games on augmenting systems with a coalition structure, which can be seen as an extension of games on augmenting systems. The core of games on augmenting systems with a coalition structure is defined, and an equivalent form is discussed. Meantime, the Shapley function for this type of games is given, and two axiomatic systems of the given Shapley function are researched. When the given games are quasi convex, the relationship between the core and the Shapley function is discussed, which does coincide as in classical case. Finally, a numerical example is given.

Authenticity Issues of Social Media: Credibility, Quality and Reality

Social media has led to paradigm shifts in ways people work and do business, interact and socialize, learn and obtain knowledge. So much so that social media has established itself as an important spatial extension of this nation-s historicity and challenges. Regardless of the enabling reputation and recommendation features through social networks embedded in the social media system, the overflow of broadcasted and publicized media contents turns the table around from engendering trust to doubting the trust system. When the trust is at doubt, the effects include deactivation of accounts and creation of multiple profiles, which lead to the overflow of 'ghost' contents (i.e. “the abundance of abandoned ships"). In most literature, the study of trust can be related to culture; hence the difference between Western-s “openness" and Eastern-s “blue-chip" concepts in networking and relationships. From a survey on issues and challenges among Malaysian social media users, 'authenticity' emerges as one of the main factors that causes and is caused by other factors. The other issue that has surfaced is credibility either in terms of message/content and source. Another is the quality of the knowledge that is shared. This paper explores the terrains of this critical space which in recent years has been dominated increasingly by, arguably, social networks embedded in the social media system, the overflow of broadcasted and publicized media content.

Struggles for Integration of the Technologies into Learning Environment in Turkey

Primary studies are being carried out in Turkey for expanding information and communication technologies (ICT) aided instruction activities. Subject of the present study is to identify whether those studies achieved their goals in the application. Information technologies (IT) formative teachers in the primary schools, and academicians in the faculties of education were interviewed to investigate the process and results of implementing computer-aided instruction methods whose basis is strengthened in theory. Analysis of the results gained from two separate surveys demonstrated that capability of the teachers in elementary education institutions for carrying into effect computer-aided instruction and technical infrastructure has not been established for computer-aided instruction practices yet. Prospective teachers must be well-equipped in ICT to duly fulfill requirements of modern education and also must be self-confident. Finally, scope and intensity of the courses given in connection with teaching of the ICT in faculties of education needs to be revised.

An Ant Colony Optimization for Dynamic JobScheduling in Grid Environment

Grid computing is growing rapidly in the distributed heterogeneous systems for utilizing and sharing large-scale resources to solve complex scientific problems. Scheduling is the most recent topic used to achieve high performance in grid environments. It aims to find a suitable allocation of resources for each job. A typical problem which arises during this task is the decision of scheduling. It is about an effective utilization of processor to minimize tardiness time of a job, when it is being scheduled. This paper, therefore, addresses the problem by developing a general framework of grid scheduling using dynamic information and an ant colony optimization algorithm to improve the decision of scheduling. The performance of various dispatching rules such as First Come First Served (FCFS), Earliest Due Date (EDD), Earliest Release Date (ERD), and an Ant Colony Optimization (ACO) are compared. Moreover, the benefit of using an Ant Colony Optimization for performance improvement of the grid Scheduling is also discussed. It is found that the scheduling system using an Ant Colony Optimization algorithm can efficiently and effectively allocate jobs to proper resources.

Fast Object/Face Detection Using Neural Networks and Fast Fourier Transform

Recently, fast neural networks for object/face detection were presented in [1-3]. The speed up factor of these networks relies on performing cross correlation in the frequency domain between the input image and the weights of the hidden layer. But, these equations given in [1-3] for conventional and fast neural networks are not valid for many reasons presented here. In this paper, correct equations for cross correlation in the spatial and frequency domains are presented. Furthermore, correct formulas for the number of computation steps required by conventional and fast neural networks given in [1-3] are introduced. A new formula for the speed up ratio is established. Also, corrections for the equations of fast multi scale object/face detection are given. Moreover, commutative cross correlation is achieved. Simulation results show that sub-image detection based on cross correlation in the frequency domain is faster than classical neural networks.