Complex-Valued Neural Network in Image Recognition: A Study on the Effectiveness of Radial Basis Function

A complex valued neural network is a neural network, which consists of complex valued input and/or weights and/or thresholds and/or activation functions. Complex-valued neural networks have been widening the scope of applications not only in electronics and informatics, but also in social systems. One of the most important applications of the complex valued neural network is in image and vision processing. In Neural networks, radial basis functions are often used for interpolation in multidimensional space. A Radial Basis function is a function, which has built into it a distance criterion with respect to a centre. Radial basis functions have often been applied in the area of neural networks where they may be used as a replacement for the sigmoid hidden layer transfer characteristic in multi-layer perceptron. This paper aims to present exhaustive results of using RBF units in a complex-valued neural network model that uses the back-propagation algorithm (called 'Complex-BP') for learning. Our experiments results demonstrate the effectiveness of a Radial basis function in a complex valued neural network in image recognition over a real valued neural network. We have studied and stated various observations like effect of learning rates, ranges of the initial weights randomly selected, error functions used and number of iterations for the convergence of error on a neural network model with RBF units. Some inherent properties of this complex back propagation algorithm are also studied and discussed.

Speech Encryption and Decryption Using Linear Feedback Shift Register (LFSR)

This paper is taken into consideration the problem of cryptanalysis of stream ciphers. There is some attempts need to improve the existing attacks on stream cipher and to make an attempt to distinguish the portions of cipher text obtained by the encryption of plain text in which some parts of the text are random and the rest are non-random. This paper presents a tutorial introduction to symmetric cryptography. The basic information theoretic and computational properties of classic and modern cryptographic systems are presented, followed by an examination of the application of cryptography to the security of VoIP system in computer networks using LFSR algorithm. The implementation program will be developed Java 2. LFSR algorithm is appropriate for the encryption and decryption of online streaming data, e.g. VoIP (voice chatting over IP). This paper is implemented the encryption module of speech signals to cipher text and decryption module of cipher text to speech signals.

Comparative Kinetic Study on Alkylation of p-cresol with Tert-butyl Alcohol using Different SO3-H Functionalized Ionic Liquid Catalysts

Ionic liquids are well known as green solvents, reaction media and catalysis. Here, three different sulfonic acid functional ionic liquids prepared in the laboratory are used as catalysts in alkylation of p-cresol with tert-butyl alcohol. The kinetics on each of the catalysts was compared and a kinetic model was developed based on the product distribution over these catalysts. The kinetic parameters were estimated using Marquadt's algorithm to minimize the error function. The Arrhenius plots show a curvature which is best interpreted by the extended Arrhenius equation.

Robust Design of Power System Stabilizers Using Adaptive Genetic Algorithms

Genetic algorithms (GAs) have been widely used for global optimization problems. The GA performance depends highly on the choice of the search space for each parameter to be optimized. Often, this choice is a problem-based experience. The search space being a set of potential solutions may contain the global optimum and/or other local optimums. A bad choice of this search space results in poor solutions. In this paper, our approach consists in extending the search space boundaries during the GA optimization, only when it is required. This leads to more diversification of GA population by new solutions that were not available with fixed search space boundaries. So, these dynamic search spaces can improve the GA optimization performances. The proposed approach is applied to power system stabilizer optimization for multimachine power system (16-generator and 68-bus). The obtained results are evaluated and compared with those obtained by ordinary GAs. Eigenvalue analysis and nonlinear system simulation results show the effectiveness of the proposed approach to damp out the electromechanical oscillation and enhance the global system stability.

A Fast Directionally Constrained Minimization of Power Algorithm for Extracting a Speech Signal Perpendicular to a Microphone Array

In this paper, an extended method of the directionally constrained minimization of power (DCMP) algorithm for broadband signals is proposed. The DCMP algorithm is one of the useful techniques of extracting a target signal from observed signals of a microphone array system. In the DCMP algorithm, output power of the microphone array is minimized under a constraint of constant responses to directions of arrival (DOAs) of specific signals. In our algorithm, by limiting the directional constraint to the perpendicular direction to the sensor array system, the calculating time is reduced.

Automated Feature Points Management for Video Mosaic Construction

A novel algorithm for construct a seamless video mosaic of the entire panorama continuously by automatically analyzing and managing feature points, including management of quantity and quality, from the sequence is presented. Since a video contains significant redundancy, so that not all consecutive video images are required to create a mosaic. Only some key images need to be selected. Meanwhile, feature-based methods for mosaicing rely on correction of feature points? correspondence deeply, and if the key images have large frame interval, the mosaic will often be interrupted by the scarcity of corresponding feature points. A unique character of the method is its ability to handle all the problems above in video mosaicing. Experiments have been performed under various conditions, the results show that our method could achieve fast and accurate video mosaic construction. Keywords?video mosaic, feature points management, homography estimation.

Investigation of a Transition from Steady Convection to Chaos in Porous Media Using Piecewise Variational Iteration Method

In this paper, a new dependable algorithm based on an adaptation of the standard variational iteration method (VIM) is used for analyzing the transition from steady convection to chaos for lowto-intermediate Rayleigh numbers convection in porous media. The solution trajectories show the transition from steady convection to chaos that occurs at a slightly subcritical value of Rayleigh number, the critical value being associated with the loss of linear stability of the steady convection solution. The VIM is treated as an algorithm in a sequence of intervals for finding accurate approximate solutions to the considered model and other dynamical systems. We shall call this technique as the piecewise VIM. Numerical comparisons between the piecewise VIM and the classical fourth-order Runge–Kutta (RK4) numerical solutions reveal that the proposed technique is a promising tool for the nonlinear chaotic and nonchaotic systems.

Fast Search Method for Large Video Database Using Histogram Features and Temporal Division

In this paper, we propose an improved fast search algorithm using combined histogram features and temporal division method for short MPEG video clips from large video database. There are two types of histogram features used to generate more robust features. The first one is based on the adjacent pixel intensity difference quantization (APIDQ) algorithm, which had been reliably applied to human face recognition previously. An APIDQ histogram is utilized as the feature vector of the frame image. Another one is ordinal feature which is robust to color distortion. Combined with active search [4], a temporal pruning algorithm, fast and robust video search can be realized. The proposed search algorithm has been evaluated by 6 hours of video to search for given 200 MPEG video clips which each length is 30 seconds. Experimental results show the proposed algorithm can detect the similar video clip in merely 120ms, and Equal Error Rate (ERR) of 1% is achieved, which is more accurately and robust than conventional fast video search algorithm.

Source Direction Detection based on Stationary Electronic Nose System

Electronic nose (array of chemical sensors) are widely used in food industry and pollution control. Also it could be used to locate or detect the direction of the source of emission odors. Usually this task is performed by electronic nose (ENose) cooperated with mobile vehicles, but when a source is instantaneous or surrounding is hard for vehicles to reach, problem occurs. Thus a method for stationary ENose to detect the direction of the source and locate the source will be required. A novel method which uses the ratio between the responses of different sensors as a discriminant to determine the direction of source in natural wind surroundings is presented in this paper. The result shows that the method is accurate and easily to be implemented. This method could be also used in movably, as an optimized algorithm for robot tracking source location.

Estimation of Relative Self-Localization Based On Natural Landmark and an Improved SURF

It is important for an autonomous mobile robot to know where it is in any time in an indoor environment. In this paper, we design a relative self-localization algorithm. The algorithm compare the interest point in two images and compute the relative displacement and orientation to determent the posture. Firstly, we use the SURF algorithm to extract the interest points of the ceiling. Second, in order to reduce amount of calculation, a replacement SURF is used to extract orientation and description of the interest points. At last, according to the transformation of the interest points in two images, the relative self-localization of the mobile robot will be estimated greatly.

Mutation Rate for Evolvable Hardware

Evolvable hardware (EHW) refers to a selfreconfiguration hardware design, where the configuration is under the control of an evolutionary algorithm (EA). A lot of research has been done in this area several different EA have been introduced. Every time a specific EA is chosen for solving a particular problem, all its components, such as population size, initialization, selection mechanism, mutation rate, and genetic operators, should be selected in order to achieve the best results. In the last three decade a lot of research has been carried out in order to identify the best parameters for the EA-s components for different “test-problems". However different researchers propose different solutions. In this paper the behaviour of mutation rate on (1+λ) evolution strategy (ES) for designing logic circuits, which has not been done before, has been deeply analyzed. The mutation rate for an EHW system modifies values of the logic cell inputs, the cell type (for example from AND to NOR) and the circuit output. The behaviour of the mutation has been analyzed based on the number of generations, genotype redundancy and number of logic gates used for the evolved circuits. The experimental results found provide the behaviour of the mutation rate to be used during evolution for the design and optimization of logic circuits. The researches on the best mutation rate during the last 40 years are also summarized.

A 10 Giga VPN Accelerator Board for Trust Channel Security System

This paper proposes a VPN Accelerator Board (VPN-AB), a virtual private network (VPN) protocol designed for trust channel security system (TCSS). TCSS supports safety communication channel between security nodes in internet. It furnishes authentication, confidentiality, integrity, and access control to security node to transmit data packets with IPsec protocol. TCSS consists of internet key exchange block, security association block, and IPsec engine block. The internet key exchange block negotiates crypto algorithm and key used in IPsec engine block. Security Association blocks setting-up and manages security association information. IPsec engine block treats IPsec packets and consists of networking functions for communication. The IPsec engine block should be embodied by H/W and in-line mode transaction for high speed IPsec processing. Our VPN-AB is implemented with high speed security processor that supports many cryptographic algorithms and in-line mode. We evaluate a small TCSS communication environment, and measure a performance of VPN-AB in the environment. The experiment results show that VPN-AB gets a performance throughput of maximum 15.645Gbps when we set the IPsec protocol with 3DES-HMAC-MD5 tunnel mode.

Swarm Navigation in a Complex Environment

This paper proposes a solution to the motion planning and control problem of car-like mobile robots which is required to move safely to a designated target in a priori known workspace cluttered with swarm of boids exhibiting collective emergent behaviors. A generalized algorithm for target convergence and swarm avoidance is proposed that will work for any number of swarms. The control laws proposed in this paper also ensures practical stability of the system. The effectiveness of the proposed control laws are demonstrated via computer simulations of an emergent behavior.

A Logic Based Framework for Planning for Mobile Agents

The objective of the paper is twofold. First, to develop a formal framework for planning for mobile agents. A logical language based on a temporal logic is proposed that can express a type of tasks which often arise in network management. Second, to design a planning algorithm for such tasks. The aim of this paper is to study the importance of finding plans for mobile agents. Although there has been a lot of research in mobile agents, not much work has been done to incorporate planning ideas for such agents. This paper makes an attempt in this direction. A theoretical study of finding plans for mobile agents is undertaken. A planning algorithm (based on the paradigm of mobile computing) is proposed and its space, time, and communication complexity is analyzed. The algorithm is illustrated by working out an example in detail.

Identification of Nonlinear Predictor and Simulator Models of a Cement Rotary Kiln by Locally Linear Neuro-Fuzzy Technique

One of the most important parts of a cement factory is the cement rotary kiln which plays a key role in quality and quantity of produced cement. In this part, the physical exertion and bilateral movement of air and materials, together with chemical reactions take place. Thus, this system has immensely complex and nonlinear dynamic equations. These equations have not worked out yet. Only in exceptional case; however, a large number of the involved parameter were crossed out and an approximation model was presented instead. This issue caused many problems for designing a cement rotary kiln controller. In this paper, we presented nonlinear predictor and simulator models for a real cement rotary kiln by using nonlinear identification technique on the Locally Linear Neuro- Fuzzy (LLNF) model. For the first time, a simulator model as well as a predictor one with a precise fifteen minute prediction horizon for a cement rotary kiln is presented. These models are trained by LOLIMOT algorithm which is an incremental tree-structure algorithm. At the end, the characteristics of these models are expressed. Furthermore, we presented the pros and cons of these models. The data collected from White Saveh Cement Company is used for modeling.

Multiple Sensors and JPDA-IMM-UKF Algorithm for Tracking Multiple Maneuvering Targets

In this paper, we consider the problem of tracking multiple maneuvering targets using switching multiple target motion models. With this paper, we aim to contribute in solving the problem of model-based body motion estimation by using data coming from visual sensors. The Interacting Multiple Model (IMM) algorithm is specially designed to track accurately targets whose state and/or measurement (assumed to be linear) models changes during motion transition. However, when these models are nonlinear, the IMM algorithm must be modified in order to guarantee an accurate track. In this paper we propose to avoid the Extended Kalman filter because of its limitations and substitute it with the Unscented Kalman filter which seems to be more efficient especially according to the simulation results obtained with the nonlinear IMM algorithm (IMMUKF). To resolve the problem of data association, the JPDA approach is combined with the IMM-UKF algorithm, the derived algorithm is noted JPDA-IMM-UKF.

Identification of MIMO Systems Using Neuro-Fuzzy Models with a Shuffled Frog Leaping Algorithm

In this paper, a TSK-type Neuro-fuzzy Inference System that combines the features of fuzzy sets and neural networks has been applied for the identification of MIMO systems. The procedure of adapting parameters in TSK model employs a Shuffled Frog Leaping Algorithm (SFLA) which is inspired from the memetic evolution of a group of frogs when seeking for food. To demonstrate the accuracy and effectiveness of the proposed controller, two nonlinear systems have been considered as the MIMO plant, and results have been compared with other learning methods based on Particle Swarm Optimization algorithm (PSO) and Genetic Algorithm (GA).

Density Clustering Based On Radius of Data (DCBRD)

Clustering algorithms are attractive for the task of class identification in spatial databases. However, the application to large spatial databases rises the following requirements for clustering algorithms: minimal requirements of domain knowledge to determine the input parameters, discovery of clusters with arbitrary shape and good efficiency on large databases. The well-known clustering algorithms offer no solution to the combination of these requirements. In this paper, a density based clustering algorithm (DCBRD) is presented, relying on a knowledge acquired from the data by dividing the data space into overlapped regions. The proposed algorithm discovers arbitrary shaped clusters, requires no input parameters and uses the same definitions of DBSCAN algorithm. We performed an experimental evaluation of the effectiveness and efficiency of it, and compared this results with that of DBSCAN. The results of our experiments demonstrate that the proposed algorithm is significantly efficient in discovering clusters of arbitrary shape and size.

Disparity Estimation for Objects of Interest

An algorithm for estimating the disparity of objects of interest is proposed. This algorithm uses image shifting and overlapping area to estimate the disparity value; thereby depth of the objects of interest can be obtained. The algorithm is able to perform at different levels of accuracy. However, as the accuracy increases the processing speed decreases. The algorithm is tested with static stereo images and sequence of stereo images. The experimental results are presented in this paper.