Flow Characteristics and Heat Transfer Enhancement in 2D Corrugated Channels

Present study numerically investigates the flow field and heat transfer of water in two dimensional sinusoidal and rectangular corrugated wall channels. Simulations are performed for fully developed flow conditions at inlet sections of the channels that have 12 waves. The temperature of the input fluid is taken to be less than that temperature of wavy walls. The governing continuity, momentum and energy equations are numerically solved using finite volume method based on SIMPLE technique. The investigation covers Reynolds number in the rage of 100-1000. The effects of the distance between upper and lower corrugated walls are studied by varying Hmin/Hmax ratio from 0.3 to 0.5 for keeping wave length and wave amplitude values fixed for both geometries. The effects of the wall geometry, Reynolds number and the distance between walls on the flow characteristics, the local Nusselt number and heat transfer are studied. It is found that heat transfer enhancement increases by usage of corrugated horizontal walls in an appropriate Reynolds number regime and channel height.

A New Floating Point Implementation of Base 2 Logarithm

Logarithms reduce products to sums and powers to products; they play an important role in signal processing, communication and information theory. They are primarily used for hardware calculations, handling multiplications, divisions, powers, and roots effectively. There are three commonly used bases for logarithms; the logarithm with base-10 is called the common logarithm, the natural logarithm with base-e and the binary logarithm with base-2. This paper demonstrates different methods of calculation for log2 showing the complexity of each and finds out the most accurate and efficient besides giving insights to their hardware design. We present a new method called Floor Shift for fast calculation of log2, and then we combine this algorithm with Taylor series to improve the accuracy of the output, we illustrate that by using two examples. We finally compare the algorithms and conclude with our remarks.

The Effect of Motor Learning Based Computer-Assisted Practice for Children with Handwriting Deficit – Comparing with the Effect of Traditional Sensorimotor Approach

The objective of this study was to test how advanced digital technology enables a more effective training on the handwriting of children with handwriting deficit. This study implemented the graphomotor apparatuses to a computer-assisted instruction system. In a randomized controlled trial, the experiments for verifying the intervention effect were conducted. Forty two children with handwriting deficit were assigned to computer-assisted instruction, sensorimotor training or control (no intervention) group. Handwriting performance was measured using the Elementary reading/writing test and computerized handwriting evaluation before and after 6 weeks of intervention. Analysis of variance of change scores were conducted to show whether statistically significant difference across the three groups. Significant difference was found among three groups. Computer group shows significant difference from the other two groups. Significance was denoted in near-point, far-point copy, dictation test, and writing from phonetic symbols. Writing speed and mean stroke velocity in near-, far-point and short paragraph copy were found significantly difference among three groups. Computer group shows significant improvement from the other groups. For clinicians and school teachers, the results of this study provide a motor control based insight for the improvement of handwriting difficulties.

Multimodal Biometric Authentication Using Choquet Integral and Genetic Algorithm

The Choquet integral is a tool for the information fusion that is very effective in the case where fuzzy measures associated with it are well chosen. In this paper, we propose a new approach for calculating fuzzy measures associated with the Choquet integral in a context of data fusion in multimodal biometrics. The proposed approach is based on genetic algorithms. It has been validated in two databases: the first base is relative to synthetic scores and the second one is biometrically relating to the face, fingerprint and palmprint. The results achieved attest the robustness of the proposed approach.

Hemodynamic Characteristics in the Human Carotid Artery Model Induced by Blood-Arterial Wall Interactions

The characteristics of physiological blood flow in human carotid arterial bifurcation model have been numerically studied using a fully coupled fluid-structure interaction (FSI) analysis. This computational model with the fluid-structure interaction is constructed to investigate the flow characteristics and wall shear stress in the carotid artery. As the flow begins to decelerate after the peak flow, a large recirculation zone develops at the non-divider wall of both internal carotid artery (ICA) and external carotid artery (ECA) in FSI model due to the elastic energy stored in the expanding compliant wall. The calculated difference in wall shear stress (WSS) in both Non-FSI and FSI models is a range of between 5 and 11% at the mean WSS. The low WSS corresponds to regions of carotid artery that are more susceptible to atherosclerosis.

Identification of Single Nucleotide Polymorphism in 5'-UTR of CYP11B1 Gene in Pakistani Sahiwal Cattle

A major goal in animal genetics is to understand the role of common genetic variants in diseases susceptibility and production traits. Sahiwal cattle can be considered as a global animal genetic resource due to its relatively high milk producing ability, resistance against tropical diseases and heat tolerant. CYP11B1 gene provides instructions for making a mitochondrial enzyme called steroid 11-beta-hydroxylase. It catalyzes the 11deoxy-cortisol to cortisol and 11deoxycorticosterone to corticosterone in cattle. The bovine CYP11B1 gene is positioned on BTA14q12 comprises of eight introns and nine exons and protein is associated with mitochondrial epithelium. The present study was aimed to identify the single-nucleotide polymorphisms in CYP11B1 gene in Sahiwal cattle breed of Pakistan. Four polymorphic sites were identified in exon one of CYP11B1 gene through sequencing approach. Significant finding was the incidence of the C→T polymorphism in 5'-UTR, causing amino acid substitution from alanine to valine (A30V) in Sahiwal cattle breed. That Ala/Val polymorphism may serve as a powerful genetic tool for the development of DNA markers that can be used for the particular traits for different local cattle breeds.

A Distance Function for Data with Missing Values and Its Application

Missing values in data are common in real world applications. Since the performance of many data mining algorithms depend critically on it being given a good metric over the input space, we decided in this paper to define a distance function for unlabeled datasets with missing values. We use the Bhattacharyya distance, which measures the similarity of two probability distributions, to define our new distance function. According to this distance, the distance between two points without missing attributes values is simply the Mahalanobis distance. When on the other hand there is a missing value of one of the coordinates, the distance is computed according to the distribution of the missing coordinate. Our distance is general and can be used as part of any algorithm that computes the distance between data points. Because its performance depends strongly on the chosen distance measure, we opted for the k nearest neighbor classifier to evaluate its ability to accurately reflect object similarity. We experimented on standard numerical datasets from the UCI repository from different fields. On these datasets we simulated missing values and compared the performance of the kNN classifier using our distance to other three basic methods. Our  experiments show that kNN using our distance function outperforms the kNN using other methods. Moreover, the runtime performance of our method is only slightly higher than the other methods.

Intermolecular Dynamics between Alcohols and Fatty Acid Ester Solvents

This work focused on the interactions which occur between ester solvents and alcohol solutes. The alcohols selected ranged from the simplest alcohol (methanol) to C10-alcohols, and solubility predictions in the form of infinite dilution activity coefficients were made using the Modified UNIFAC Dortmund group contribution model. The model computation was set up on a Microsoft Excel spreadsheet specifically designed for this purpose. It was found that alcohol/ ester interactions yielded an increase in activity coefficients (i.e. became less soluble) with an increase in the size of the ester solvent molecule. Furthermore, activity coefficients decreased with an increase in the size of the alcohol solute. The activity coefficients also decreased with an increase in the degree of unsaturation of the ester hydrocarbon tail. Tertiary alcohols yielded lower activity coefficients than primary alcohols. Finally, cyclic alcohols yielded higher activity coefficients than straight-chain alcohols until a point is reached where the trend is reversed, referred to as the ‘crossover’ point.

The Implementation of the Multi-Agent Classification System (MACS) in Compliance with FIPA Specifications

The paper discusses the implementation of the MultiAgent classification System (MACS) and utilizing it to provide an automated and accurate classification of end users developing applications in the spreadsheet domain. However, different technologies have been brought together to build MACS. The strength of the system is the integration of the agent technology with the FIPA specifications together with other technologies, which are the .NET widows service based agents, the Windows Communication Foundation (WCF) services, the Service Oriented Architecture (SOA), and Oracle Data Mining (ODM). The Microsoft's .NET widows service based agents were utilized to develop the monitoring agents of MACS, the .NET WCF services together with SOA approach allowed the distribution and communication between agents over the WWW. The Monitoring Agents (MAs) were configured to execute automatically to monitor excel spreadsheets development activities by content. Data gathered by the Monitoring Agents from various resources over a period of time was collected and filtered by a Database Updater Agent (DUA) residing in the .NET client application of the system. This agent then transfers and stores the data in Oracle server database via Oracle stored procedures for further processing that leads to the classification of the end user developers.

A Car Parking Monitoring System Using Wireless Sensor Networks

This paper presents a car parking monitoring system using wireless sensor networks. Multiple sensor nodes and a sink node, a gateway, and a server constitute a wireless network for monitoring a parking lot. Each of the sensor nodes is equipped with a 3-axis AMR sensor and deployed in the center of a parking space. Each sensor node reads its sensor values periodically and transmits the data to the sink node if the current and immediate past sensor values show a difference exceeding a threshold value. The sensor nodes and sink node use the 448 MHz band for wireless communication. Since RF transmission only occurs when sensor values show abrupt changes, the number of RF transmission operations is reduced and battery power can be conserved. The data from the sensor nodes reach the server via the sink node and gateway. The server determines which parking spaces are taken by cars based upon the received sensor data and reference values. The reference values are average sensor values measured by each sensor node when the corresponding parking spot is not occupied by a vehicle. Because the decision making is done by the server, the computational burden of the sensor node is relieved, which helps reduce the duty cycle of the sensor node.

Properties of a Stochastic Predator-Prey System with Holling II Functional Response

In this paper, a stochastic predator-prey system with Holling II functional response is studied. First, we show that there is a unique positive solution to the system for any given positive initial value. Then, stochastically bounded of the positive solution to the stochastic system is derived. Moreover, sufficient conditions for global asymptotic stability are also established. In the end, some simulation figures are carried out to support the analytical findings.

Inexact Alternating Direction Method for Variational Inequality Problems with Linear Equality Constraints

In this article, a new inexact alternating direction method(ADM) is proposed for solving a class of variational inequality problems. At each iteration, the new method firstly solves the resulting subproblems of ADM approximately to generate an temporal point ˜xk, and then the multiplier yk is updated to get the new iterate yk+1. In order to get xk+1, we adopt a new descent direction which is simple compared with the existing prediction-correction type ADMs. For the inexact ADM, the resulting proximal subproblem has closedform solution when the proximal parameter and inexact term are chosen appropriately. We show the efficiency of the inexact ADM numerically by some preliminary numerical experiments.

Complex Dynamic Behaviors in an Ivlev-type Stage-structured Predator-prey System Concerning Impulsive Control Strategy

An Ivlev-type predator-prey system and stage-structured for predator concerning impulsive control strategy is considered. The conditions for the locally asymptotically stable prey-eradication periodic solution is obtained, by using Floquet theorem and small amplitude perturbation skills——when the impulsive period is less than the critical value. Otherwise, the system is permanence. Numerical examples show that the system considered has more complicated dynamics, including high-order quasi-periodic and periodic oscillating, period-doubling and period-halving bifurcation, chaos and attractor crisis, etc. Finally, the biological implications of the results and the impulsive control strategy are discussed.

Septic B-Spline Collocation Method for Numerical Solution of the Kuramoto-Sivashinsky Equation

In this paper the Kuramoto-Sivashinsky equation is solved numerically by collocation method. The solution is approximated as a linear combination of septic B-spline functions. Applying the Von-Neumann stability analysis technique, we show that the method is unconditionally stable. The method is applied on some test examples, and the numerical results have been compared with the exact solutions. The global relative error and L∞ in the solutions show the efficiency of the method computationally.

Experimental Testing of Statistical Size Effect in Civil Engineering Structures

The presented paper copes with an experimental evaluation of a model based on modified Weibull size effect theory. Classical statistical Weibull theory was modified by introducing a new parameter (correlation length lp) representing the spatial autocorrelation of a random mechanical properties of material. This size effect modification was observed on two different materials used in civil engineering: unreinforced (plain) concrete and multi-filament yarns made of alkaliresistant (AR) glass which are used for textile-reinforced concrete. The behavior under flexural, resp. tensile loading was investigated by laboratory experiments. A high number of specimens of different sizes was tested to obtain statistically significant data which were subsequently corrected and statistically processed. Due to a distortion of the measured displacements caused by the unstiff experiment device, only the maximal load values were statistically evaluated. Results of the experiments showed a decreasing strength with an increasing sample length. Size effect curves were obtained and the correlation length was fitted according to measured data. Results did not exclude the existence of the proposed new parameter lp.

The Loyalty of Banks’ Employees in the Context of the Acceptance of Clients’ Needs and Their Own Productivity. A Case Study from the Czech and Slovak Republic

The aim of this article was to analyze the relationship between the loyalty of banks´ employees and the acceptance of clients’ needs and to analyze the relationship between the loyalty of banks’ employees and the lack of their productivity in the Czech and Slovak banking sector. Our research has been realized through a questionnaire survey. The loyalty of banks’ employees was higher in the Czech Republic than in Slovak Republic which has been transformed into a higher acceptance rate of customers’ needs and lower lack of employees’ productivity. Within both countries, it has been found that the approach of loyal employees to the acceptance of clients’ needs is not statistically significantly different from the approach of other employees. It has been also discovered that loyal employees did not work more intensively and did not feel statistically significant lower lack of their own productivity.

K-best Night Vision Devices by Multi-Criteria Mixed-Integer Optimization Modeling

The paper describes an approach for defining of k-best night vision devices based on multi-criteria mixed-integer optimization modeling. The parameters of night vision devices are considered as criteria that have to be optimized. Using different user preferences for the relative importance between parameters different choice of k-best devices can be defined. An ideal device with all of its parameters at their optimum is used to determine how far the particular device from the ideal one is. A procedure for evaluation of deviation between ideal solution and k-best solutions is presented. The applicability of the proposed approach is numerically illustrated using real night vision devices data. The proposed approach contributes to quality of decisions about choice of night vision devices by making the decision making process more certain, rational and efficient. 

Simulation Model of an Ultra-Light Overhead Conveyor System; Analysis of the Process in the Warehouse

Ultra-light overhead conveyor systems are rope-based conveying systems with individually driven vehicles. The vehicles can move automatically on the rope and this can be realized by energy and signals. The ultra-light overhead conveyor systems always must be integrated with a logistical process by finding a best way for a cheaper material flow in order to guarantee precise and fast workflows. This paper analyzes the process of an ultra-light overhead conveyor system using necessary assumptions. The analysis consists of three scenarios. These scenarios are based on raising the vehicle speeds with equal increments at each case. The correlation between the vehicle speed and system throughput is investigated. A discrete-event simulation model of an ultra-light overhead conveyor system is constructed using DOSIMIS-3 software to implement three scenarios. According to simulation results; the optimal scenario, hence the optimal vehicle speed, is found out among three scenarios. This simulation model demonstrates the effect of increased speed on the system throughput.

How Stock Market Reacts to Guidance Revisions and Actual Earnings Surprises

According to the existing literature, companies manage analysts’ expectations of their future earnings by issuing pessimistic earnings guidance to meet the expectations. Consequently, one could expect that markets price this pessimistic bias in advance and penalize companies more for lowering the guidance than reward for beating the guidance. In this paper we confirm this empirically. In addition we show that although guidance revisions have a statistically significant relation to stock returns, that is not the case with the actual earnings surprise. Reason for this could be that, after the annual earnings report also information on future earnings power is given at the same time.