Analysis on the Feasibility of Landsat 8 Imagery for Water Quality Parameters Assessment in an Oligotrophic Mediterranean Lake

Lake water quality monitoring in combination with the use of earth observation products constitutes a major component in many water quality monitoring programs. Landsat 8 images of Trichonis Lake (Greece) acquired on 30/10/2013 and 30/08/2014 were used in order to explore the possibility of Landsat 8 to estimate water quality parameters and particularly CDOM absorption at specific wavelengths, chlorophyll-a and nutrient concentrations in this oligotrophic freshwater body, characterized by inexistent quantitative, temporal and spatial variability. Water samples have been collected at 22 different stations, on late August of 2014 and the satellite image of the same date was used to statistically correlate the in-situ measurements with various combinations of Landsat 8 bands in order to develop algorithms that best describe those relationships and calculate accurately the aforementioned water quality components. Optimal models were applied to the image of late October of 2013 and the validation of the results was conducted through their comparison with the respective available in-situ data of 2013. Initial results indicated the limited ability of the Landsat 8 sensor to accurately estimate water quality components in an oligotrophic waterbody. As resulted by the validation process, ammonium concentrations were proved to be the most accurately estimated component (R = 0.7), followed by chl-a concentration (R = 0.5) and the CDOM absorption at 420 nm (R = 0.3). In-situ nitrate, nitrite, phosphate and total nitrogen concentrations of 2014 were measured as lower than the detection limit of the instrument used, hence no statistical elaboration was conducted. On the other hand, multiple linear regression among reflectance measures and total phosphorus concentrations resulted in low and statistical insignificant correlations. Our results were concurrent with other studies in international literature, indicating that estimations for eutrophic and mesotrophic lakes are more accurate than oligotrophic, owing to the lack of suspended particles that are detectable by satellite sensors. Nevertheless, although those predictive models, developed and applied to Trichonis oligotrophic lake are less accurate, may still be useful indicators of its water quality deterioration.

Development of Mechanisms of Value Creation and Risk Management Organization in the Conditions of Transformation of the Economy of Russia

In modern conditions, scientific judgment of problems in developing mechanisms of value creation and risk management acquires special relevance. Formation of economic knowledge has resulted in the constant analysis of consumer behavior for all players from national and world markets. Effective mechanisms development of the demand analysis, crucial for consumer's characteristics of future production, and the risks connected with the development of this production are the main objectives of control systems in modern conditions. The modern period of economic development is characterized by a high level of globalization of business and rigidity of competition. At the same time, the considerable share of new products and services costs has a non-material intellectual nature. The most successful in Russia is the contemporary development of small innovative firms. Such firms, through their unique technologies and new approaches to process management, which form the basis of their intellectual capital, can show flexibility and succeed in the market. As a rule, such enterprises should have very variable structure excluding the tough scheme of submission and demanding essentially new incentives for inclusion of personnel in innovative activity. Realization of similar structures, as well as a new approach to management, can be constructed based on value-oriented management which is directed to gradual change of consciousness of personnel and formation from groups of adherents included in the solution of the general innovative tasks. At the same time, valuable changes can gradually capture not only innovative firm staff, but also the structure of its corporate partners. Introduction of new technologies is the significant factor contributing to the development of new valuable imperatives and acceleration of the changing values systems of the organization. It relates to the fact that new technologies change the internal environment of the organization in a way that the old system of values becomes inefficient in new conditions. Introduction of new technologies often demands change in the structure of employee’s interaction and training in their new principles of work. During the introduction of new technologies and the accompanying change in the value system, the structure of the management of the values of the organization is changing. This is due to the need to attract more staff to justify and consolidate the new value system and bring their view into the motivational potential of the new value system of the organization.

Position of the Constitutional Court of the Russian Federation on the Matter of Restricting Constitutional Rights of Citizens Concerning Banking Secrecy

The aim of the present article is to analyze the position of the Constitutional Court of the Russian Federation on the matter of restricting the constitutional rights of citizens to inviolability of professional and banking secrecy in effecting controlling activities. The methodological ground of the present Article represents the dialectic scientific method of the socio-political, legal and organizational processes with the principles of development, integrity, and consistency, etc. The consistency analysis method is used while researching the object of the analysis. Some public-private research methods are also used: the formally-logical method or the comparative legal method, are used to compare the understanding of the ‘secrecy’ concept. The aim of the present article is to find the root of the problem and to give recommendations for the solution of the problem. The result of the present research is the author’s conclusion on the necessity of the political will to improve Russian legislation with the aim of compliance with the provisions of the Constitution. It is also necessary to establish a clear balance between the constitutional rights of the individual and the limit of these rights when carrying out various control activities by public authorities. Attempts by the banks to "overdo" an anti-money laundering law under threat of severe sanctions by the regulators actually led to failures in the execution of normal economic activity. Therefore, individuals face huge problems with payments on the basis of clearing, in addition to problems with cash withdrawals. The Bank of Russia sets requirements for banks to execute Federal Law No. 115-FZ too high. It is high place to attract political will here. As well, recent changes in Russian legislation, e.g. allowing banks to refuse opening of accounts unilaterally, simplified banking activities in the country. The article focuses on different theoretical approaches towards the concept of “secrecy”. The author gives an overview of the practices of Spain, Switzerland and the United States of America on the matter of restricting the constitutional rights of citizens to inviolability of professional and banking secrecy in effecting controlling activities. The Constitutional Court of the Russian Federation basing on the Constitution of the Russian Federation has its special understanding of the issue, which should be supported by further legislative development in the Russian Federation.

Parameter Tuning of Complex Systems Modeled in Agent Based Modeling and Simulation

The major problem encountered when modeling complex systems with agent-based modeling and simulation techniques is the existence of large parameter spaces. A complex system model cannot be expected to reflect the whole of the real system, but by specifying the most appropriate parameters, the actual system can be represented by the model under certain conditions. When the studies conducted in recent years were reviewed, it has been observed that there are few studies for parameter tuning problem in agent based simulations, and these studies have focused on tuning parameters of a single model. In this study, an approach of parameter tuning is proposed by using metaheuristic algorithms such as Genetic Algorithm (GA), Particle Swarm Optimization (PSO), Artificial Bee Colonies (ABC), Firefly (FA) algorithms. With this hybrid structured study, the parameter tuning problems of the models in the different fields were solved. The new approach offered was tested in two different models, and its achievements in different problems were compared. The simulations and the results reveal that this proposed study is better than the existing parameter tuning studies.

Generalized Fuzzy Subalgebras and Fuzzy Ideals of BCI-Algebras with Operators

The aim of this paper is to introduce the concepts of generalized fuzzy subalgebras, generalized fuzzy ideals and generalized fuzzy quotient algebras of BCI-algebras with operators, and to investigate their basic properties.

(∈,∈∨q)-Fuzzy Subalgebras and Fuzzy Ideals of BCI-Algebras with Operators

The aim of this paper is to introduce the concepts of (∈, ∈∨q)-fuzzy subalgebras, (∈,∈∨q)-fuzzy ideals and (∈,∈∨q)-fuzzy quotient algebras of BCI-algebras with operators, and to investigate their basic properties.

Growth Performance and Yield of the Edible White Rot Fungus (Pleurotus ostreatus) on Different Agro Waste Materials

A study was carried out to evaluate the growth and yield performance of Pleurotus ostreatus spawn on different organic substrates in Lafia, Nasarawa State, Nigeria. 50 g each of four different substrates namely; corncobs, rice straw, sugarcane bagasse and sawdust sourced locally from farmlands and processing sites, were amended with 2% calcium carbonate and calcium sulphide and sterilized using three sterilization methods namely; hot water, steam, and lime. Five grams of P. ostreatus spawn were inoculated unto treated substrates, incubated in the dark for 16 days and in light for 19 days at 25 0C for the commencement of pinhead and fruit body formations respectively. Growth and yield parameters such as days to full colonization, days to pinhead formation and days to fruit body formation were recorded. Cap diameter and fresh weight of mature mushrooms were also measured for a total count of four flushes. P. ostreatus spawn grown on sugarcane bagasse recorded the highest mean cap diameter (4.69 cm), highest mean fresh weight (34.68 g), highest biological efficiency (69.37%) and highest production rate (2.83 g per day). Spawn grown on rice straw recorded the least number of days to full substrate colonization (11.00). Spawn grown on corn cobs recorded the least mean number of days to pin head (18.75) and fruiting body formations (20.25). There were no significant differences (P ≤ 0.05) among the evaluated substrates with respect to growth and yield performance of P. ostreatus. Substrates sterilized with hot water supported the highest mean cap diameter (5.64 cm), highest biological efficiency (87.04%) and highest production rate (3.43 g per day) of P. ostreatus. Significant differences (P ≤ 0.05) were observed in cap diameter, fresh weight, biological efficiency and production rates among the evaluated sterilization methods. Hot water sterilization of sugarcane bagasse could be adopted for enhanced yield of oyster mushrooms, especially among indigent farming communities in Nigeria and beyond.

Determination of Small Shear Modulus of Clayey Sand Using Bender Element Test

In this article, the results of a series of carefully conducted laboratory test program were represented to determine the small strain shear modulus of sand mixed with a range of kaolinite including zero to 30%. This was experimentally achieved using a triaxial cell equipped with bender element. Results indicate that small shear modulus tends to increase, while clay content decreases and effective confining pressure increases. The exponent of stress in the power model regression analysis was not sensitive to the amount of clay content for all sand clay mixtures, while coefficient A was directly affected by change in clay content.

Analysis of Mechanical Properties for AP/HTPB Solid Propellant under Different Loading Conditions

To investigate the characterization of the mechanical properties of composite solid propellant (CSP) based on hydroxyl-terminated polybutadiene (HTPB) at different temperatures and strain rates, uniaxial tensile tests were conducted over a range of temperatures -60 °C to +76 °C and strain rates 0.000164 to 0.328084 s-1 using a conventional universal testing machine. From the experimental data, it can be noted that the mechanical properties of AP/HTPB propellant are mainly dependent on the applied strain rate and the temperature condition. The stress-strain responses exhibited an initial yielding followed by the viscoelastic phase, which was strongly affected by the strain rate and temperature. It was found that the mechanical properties increased with both increasing strain rate and decreasing temperature. Based on the experimental tests, the master curves of the tensile properties are drawn using predetermined shift factor and the results were discussed. This work is a first step in preliminary investigation the nonlinear viscoelasticity behavior of CSP.

Education for Sustainability Using PBL on an Engineering Course at the National University of Colombia

This article describes the implementation experience of Project-Based Learning (PBL) in an engineering course of the Universidad Nacional de Colombia, with the aim of strengthening student skills necessary for the exercise of their profession under a sustainability framework. Firstly, we present a literature review on the education for sustainability field, emphasizing the skills and knowledge areas required for its development, as well as the commitment of the Faculty of Engineering of the Universidad Nacional de Colombia, and other engineering faculties of the country, regarding education for sustainability. This article covers the general aspects of the course, describes how students team were formed, and how their experience was during the first semester of 2017. During this period two groups of students decided to develop their course project aiming to solve a problem regarding a Non-Governmental Organization (NGO) that works with head-of-household mothers in a low-income neighborhood in Bogota (Colombia). Subsequently, we show how sustainability is involved in the course, how tools are provided to students, and how activities are developed as to strengthen their abilities, which allows them to incorporate sustainability in their projects while also working on the methodology used to develop said projects. Finally, we introduce the results obtained by the students who sent the prototypes of their projects to the community they were working on and the conclusions reached by them regarding the course experience.

The Power of “Merkiavelli”: Representations of Angela Merkel in the Portuguese Press (2008-2015)

Since 1989, with the Fall of the Berlin Wall, Germany has undergone a profound restructuring political and economic process. When the Euro Crisis broke out, Germany was no longer the “sick man” of Europe. Instead, it had recovered its dominance as the strongest and wealthiest economy within the European Union. With the European Debt Crisis, that has been taking place in the European Union since the end of 2009, Germany´s Chancellor Angela Merkel has gained the power of deciding, so to say, on the fate of the debtor nations, but she neither stands for binding German commitments, nor refuses assistance. A debate on whether Merkel’s hesitation has been deliberated and used as a means of coercion has arisen on international print media, and the Portuguese Press has been no exception. This study, which was conducted by using news reporting, opinion articles, interviews and editorials, published in the Portuguese weekly Expresso and the daily Público, from 2008 to 2015, tries to show how Merkel’s hesitation, depicted in the press by the term “Merkiavelli”, was perceived in Portugal, a country that had to embrace the austerity measures, imposed by the European Central Bank, but defined under Angela Merkel´s leading role.

Maize Tolerance to Natural and Artificial Infestation with Diabrotica virgifera virgifera Eggs

Western corn rootworm – WCR (Diabrotica virgifera sp.virgifera, Coleoptera, Chrysomelidae) is economically the most important pest of maize worldwide. WCR natural population is already very abundant on Serbian fields, and keeps increasing each year. Tolerance is recognized by larger root size and bigger root regrowth. Severe larval injuries cause lack of compensatory regrowth and lead to reduction of plant growth and yield. The aim of this research was to evaluate tolerance of commercial Serbian maize hybrid NS 640, under natural WCR infestation and under conditions of artificial infestation, and to obtain the information about its tolerance to WCR larval feeding in two consecutive years. Field experiments were conducted in 2015 and 2016, in Bečej (Vojvodina province, Serbia). In experimental field, 96 plants were selected, marked and arranged in 48 pairs. Each pair represented two plants. The first plant was artificially infested with 4 mL WCR egg suspension in agar (550 eggs plant-1) in the root zone (D plant). The second plant represented control plant (C plant) with injection of 4 mL distilled water in root zone. The experimental field was inspected weekly. A hybrid tolerance was assessed based on root injury level and root mass. Root injury was rated using the Node-Injury Scale 1-6, during the last field inspection (September – October). Comparing the root injuries on D and C plants in 2015, more severe damages were recorded on D plants (12 plants - rate 5 and 17 plants - rate 6) compared to C plants (2 plants - rate 5 and 8 plants - rate 6). Also, the highest number of plants with healthy roots (rate 1), was registered in the control (25 plants), while only 4 D plants were rated as injury level 1. In 2016, root injuries caused by WCR larvae on D and C plants did not differ significantly. The reason is the difference in climatic conditions between the years. The 2015 was extremely dry and more suitable for WCR larval development and movement in the soil, compared to 2016. Thus, more severe damages appeared on artificially infested plants (D plants). Root mass was in strong correlation with the level of root injury, but did not differ significantly between D and C plants, in both years.

Optimization Approach to Estimate Hammerstein–Wiener Nonlinear Blocks in Presence of Noise and Disturbance

Hammerstein–Wiener model is a block-oriented model where a linear dynamic system is surrounded by two static nonlinearities at its input and output and could be used to model various processes. This paper contains an optimization approach method for analysing the problem of Hammerstein–Wiener systems identification. The method relies on reformulate the identification problem; solve it as constraint quadratic problem and analysing its solutions. During the formulation of the problem, effects of adding noise to both input and output signals of nonlinear blocks and disturbance to linear block, in the emerged equations are discussed. Additionally, the possible parametric form of matrix operations to reduce the equation size is presented. To analyse the possible solutions to the mentioned system of equations, a method to reduce the difference between the number of equations and number of unknown variables by formulate and importing existing knowledge about nonlinear functions is presented. Obtained equations are applied to an instance H–W system to validate the results and illustrate the proposed method.

Assessment of Noise Pollution in the City of Biskra, Algeria

In this research, a quantitative assessment of the urban sound environment of the city of Biskra, Algeria, was conducted. To determine the quality of the soundscape based on in-situ measurement, using a Landtek SL5868P sound level meter in 47 points, which have been identified to represent the whole city. The result shows that the urban noise level varies from 55.3 dB to 75.8 dB during the weekdays and from 51.7 dB to 74.3 dB during the weekend. On the other hand, we can also note that 70.20% of the results of the weekday measurements and 55.30% of the results of the weekend measurements have levels of sound intensity that exceed the levels allowed by Algerian law and the recommendations of the World Health Organization. These very high urban noise levels affect the quality of life, the acoustic comfort and may even pose multiple risks to people's health.

Rapid Monitoring of Earthquake Damages Using Optical and SAR Data

Earthquake is an inevitable catastrophic natural disaster. The damages of buildings and man-made structures, where most of the human activities occur are the major cause of casualties from earthquakes. A comparison of optical and SAR data is presented in the case of Kathmandu valley which was hardly shaken by 2015-Nepal Earthquake. Though many existing researchers have conducted optical data based estimated or suggested combined use of optical and SAR data for improved accuracy, however finding cloud-free optical images when urgently needed are not assured. Therefore, this research is specializd in developing SAR based technique with the target of rapid and accurate geospatial reporting. Should considers that limited time available in post-disaster situation offering quick computation exclusively based on two pairs of pre-seismic and co-seismic single look complex (SLC) images. The InSAR coherence pre-seismic, co-seismic and post-seismic was used to detect the change in damaged area. In addition, the ground truth data from field applied to optical data by random forest classification for detection of damaged area. The ground truth data collected in the field were used to assess the accuracy of supervised classification approach. Though a higher accuracy obtained from the optical data then integration by optical-SAR data. Limitation of cloud-free images when urgently needed for earthquak evevent are and is not assured, thus further research on improving the SAR based damage detection is suggested. Availability of very accurate damage information is expected for channelling the rescue and emergency operations. It is expected that the quick reporting of the post-disaster damage situation quantified by the rapid earthquake assessment should assist in channeling the rescue and emergency operations, and in informing the public about the scale of damage.

The Effect of Soil Contamination on Chemical Composition and Quality of Aronia (Aronia melanocarpa) Fruits

A field study was conducted to evaluate the chemical composition and quality of the Aronia fruits, as well as the possibilities of Aronia cultivation on soils contaminated with heavy metals. The experiment was performed on an agricultural field contaminated by the Non-Ferrous-Metal Works (NFMW) near Plovdiv, Bulgaria. The study included four varieties of Aronia; Aron variety, Hugin variety, Viking variety and Nero variety. The Aronia was cultivated according to the conventional technology on areas at a different distance from the source of pollution NFMW- Plovdiv (1 km, 3.5 km, and 15 km). The concentrations of macroelements, microelements, and heavy metals in Aronia fruits were determined. The dry matter content, ash, sugars, proteins, and fats were also determined. Aronia is a crop that is tolerant to heavy metals and can successfully be grown on soils contaminated with heavy metals. The increased content of heavy metals in the soil leads to less absorption of the nutrients (Ca, Mg and P) in the fruit of the Aronia. Soil pollution with heavy metals does not affect the quality of the Aronia fruit varieties.

Sphere in Cube Grid Approach to Modelling of Shale Gas Production Using Non-Linear Flow Mechanisms

Shale gas is one of the most rapidly growing forms of natural gas. Unconventional natural gas deposits are difficult to characterize overall, but in general are often lower in resource concentration and dispersed over large areas. Moreover, gas is densely packed into the matrix through adsorption which accounts for large volume of gas reserves. Gas production from tight shale deposits are made possible by extensive and deep well fracturing which contacts large fractions of the formation. The conventional reservoir modelling and production forecasting methods, which rely on fluid-flow processes dominated by viscous forces, have proved to be very pessimistic and inaccurate. This paper presents a new approach to forecast shale gas production by detailed modeling of gas desorption, diffusion and non-linear flow mechanisms in combination with statistical representation of these processes. The representation of the model involves a cube as a porous media where free gas is present and a sphere (SiC: Sphere in Cube model) inside it where gas is adsorbed on to the kerogen or organic matter. Further, the sphere is considered consisting of many layers of adsorbed gas in an onion-like structure. With pressure decline, the gas desorbs first from the outer most layer of sphere causing decrease in its molecular concentration. The new available surface area and change in concentration triggers the diffusion of gas from kerogen. The process continues until all the gas present internally diffuses out of the kerogen, gets adsorbs onto available surface area and then desorbs into the nanopores and micro-fractures in the cube. Each SiC idealizes a gas pathway and is characterized by sphere diameter and length of the cube. The diameter allows to model gas storage, diffusion and desorption; the cube length takes into account the pathway for flow in nanopores and micro-fractures. Many of these representative but general cells of the reservoir are put together and linked to a well or hydraulic fracture. The paper quantitatively describes these processes as well as clarifies the geological conditions under which a successful shale gas production could be expected. A numerical model has been derived which is then compiled on FORTRAN to develop a simulator for the production of shale gas by considering the spheres as a source term in each of the grid blocks. By applying SiC to field data, we demonstrate that the model provides an effective way to quickly access gas production rates from shale formations. We also examine the effect of model input properties on gas production.

Improved Small-Signal Characteristics of Infrared 850 nm Top-Emitting Vertical-Cavity Lasers

High-speed infrared vertical-cavity surface-emitting laser diodes (VCSELs) with Cu-plated heat sinks were fabricated and tested. VCSELs with 10 mm aperture diameter and 4 mm of electroplated copper demonstrated a -3dB modulation bandwidth (f-3dB) of 14 GHz and a resonance frequency (fR) of 9.5 GHz at a bias current density (Jbias) of only 4.3 kA/cm2, which corresponds to an improved f-3dB2/Jbias ratio of 44 GHz2/kA/cm2. At higher and lower bias current densities, the f-3dB2/ Jbias ratio decreased to about 30 GHz2/kA/cm2 and 18 GHz2/kA/cm2, respectively. Examination of the analogue modulation response demonstrated that the presented VCSELs displayed a steady f-3dB/ fR ratio of 1.41±10% over the whole range of the bias current (1.3Ith to 6.2Ith). The devices also demonstrated a maximum modulation bandwidth (f-3dB max) of more than 16 GHz at a bias current less than the industrial bias current standard for reliability by 25%.

Parameter Optimization and Thermal Simulation in Laser Joining of Coach Peel Panels of Dissimilar Materials

The quality of laser welded-brazed (LWB) joints were strongly dependent on the main process parameters, therefore the effect of laser power (3.2–4 kW), welding speed (60–80 mm/s) and wire feed rate (70–90 mm/s) on mechanical strength and surface roughness were investigated in this study. The comprehensive optimization process by means of response surface methodology (RSM) and desirability function was used for multi-criteria optimization. The experiments were planned based on Box– Behnken design implementing linear and quadratic polynomial equations for predicting the desired output properties. Finally, validation experiments were conducted on an optimized process condition which exhibited good agreement between the predicted and experimental results. AlSi3Mn1 was selected as the filler material for joining aluminum alloy 6022 and hot-dip galvanized steel in coach peel configuration. The high scanning speed could control the thickness of IMC as thin as 5 µm. The thermal simulations of joining process were conducted by the Finite Element Method (FEM), and results were validated through experimental data. The Fe/Al interfacial thermal history evidenced that the duration of critical temperature range (700–900 °C) in this high scanning speed process was less than 1 s. This short interaction time leads to the formation of reaction-control IMC layer instead of diffusion-control mechanisms.

Image Processing on Geosynthetic Reinforced Layers to Evaluate Shear Strength and Variations of the Strain Profiles

This study investigates the reinforcement function of geosynthetics on the shear strength and strain profile of sand. Conducting a series of simple shear tests, the shearing behavior of the samples under static and cyclic loads was evaluated. Three different types of geosynthetics including geotextile and geonets were used as the reinforcement materials. An image processing analysis based on the optical flow method was performed to measure the lateral displacements and estimate the shear strains. It is shown that besides improving the shear strength, the geosynthetic reinforcement leads a remarkable reduction on the shear strains. The improved layer reduces the required thickness of the soil layer to resist against shear stresses. Consequently, the geosynthetic reinforcement can be considered as a proper approach for the sustainable designs, especially in the projects with huge amount of geotechnical applications like subgrade of the pavements, roadways, and railways.