Detection of Breast Cancer in the JPEG2000 Domain

Breast cancer detection techniques have been reported to aid radiologists in analyzing mammograms. We note that most techniques are performed on uncompressed digital mammograms. Mammogram images are huge in size necessitating the use of compression to reduce storage/transmission requirements. In this paper, we present an algorithm for the detection of microcalcifications in the JPEG2000 domain. The algorithm is based on the statistical properties of the wavelet transform that the JPEG2000 coder employs. Simulation results were carried out at different compression ratios. The sensitivity of this algorithm ranges from 92% with a false positive rate of 4.7 down to 66% with a false positive rate of 2.1 using lossless compression and lossy compression at a compression ratio of 100:1, respectively.

Delay Analysis of Sampled-Data Systems in Hard RTOS

In this paper, we have presented the effect of varying time-delays on performance and stability in the single-channel multirate sampled-data system in hard real-time (RT-Linux) environment. The sampling task require response time that might exceed the capacity of RT-Linux. So a straight implementation with RT-Linux is not feasible, because of the latency of the systems and hence, sampling period should be less to handle this task. The best sampling rate is chosen for the sampled-data system, which is the slowest rate meets all performance requirements. RT-Linux is consistent with its specifications and the resolution of the real-time is considered 0.01 seconds to achieve an efficient result. The test results of our laboratory experiment shows that the multi-rate control technique in hard real-time operating system (RTOS) can improve the stability problem caused by the random access delays and asynchronization.

Application of the Data Distribution Service for Flexible Manufacturing Automation

This paper discusses the applicability of the Data Distribution Service (DDS) for the development of automated and modular manufacturing systems which require a flexible and robust communication infrastructure. DDS is an emergent standard for datacentric publish/subscribe middleware systems that provides an infrastructure for platform-independent many-to-many communication. It particularly addresses the needs of real-time systems that require deterministic data transfer, have low memory footprints and high robustness requirements. After an overview of the standard, several aspects of DDS are related to current challenges for the development of modern manufacturing systems with distributed architectures. Finally, an example application is presented based on a modular active fixturing system to illustrate the described aspects.

High-Frequency Spectrum Analysis of VFTO Generated inside Gas Insulated Substations

Worldwide many electrical equipment insulation failures have been reported caused by switching operations, while those equipments had previously passed all the standard tests and complied with all quality requirements. The problem is mostly associated with high-frequency overvoltages generated during opening or closing of a switching device. The transients generated during switching operations in a Gas Insulated Substation (GIS) are associated with high frequency components in the order of few tens of MHz. The frequency spectrum of the VFTO generated in the 220/66 kV Wadi-Hoff GIS is analyzed using Fast Fourier Transform technique. The main frequency with high voltage amplitude due to the operation of disconnector (DS5) is 5 to 10 MHz, with the highest amplitude at 9 MHz. The main frequency with high voltage amplitude due to the operation of circuit breaker (CB5) is 1 to 25 MHz, with the highest amplitude at 2 MHz. Mitigating techniques damped the oscillating frequencies effectively. The using of cable terminal reduced the frequency oscillation effectively than that of OHTL terminal. The using of a shunt capacitance results in vanishing the high frequency components. Ferrite rings reduces the high frequency components effectively especially in the range 2 to 7 MHz. The using of RC and RL filters results in vanishing the high frequency components.

Models to Customise Web Service Discovery Result using Static and Dynamic Parameters

This paper presents three models which enable the customisation of Universal Description, Discovery and Integration (UDDI) query results, based on some pre-defined and/or real-time changing parameters. These proposed models detail the requirements, design and techniques which make ranking of Web service discovery results from a service registry possible. Our contribution is two fold: First, we present an extension to the UDDI inquiry capabilities. This enables a private UDDI registry owner to customise or rank the query results, based on its business requirements. Second, our proposal utilises existing technologies and standards which require minimal changes to existing UDDI interfaces or its data structures. We believe these models will serve as valuable reference for enhancing the service discovery methods within a private UDDI registry environment.

Development of Subjective Measures of Interestingness: From Unexpectedness to Shocking

Knowledge Discovery of Databases (KDD) is the process of extracting previously unknown but useful and significant information from large massive volume of databases. Data Mining is a stage in the entire process of KDD which applies an algorithm to extract interesting patterns. Usually, such algorithms generate huge volume of patterns. These patterns have to be evaluated by using interestingness measures to reflect the user requirements. Interestingness is defined in different ways, (i) Objective measures (ii) Subjective measures. Objective measures such as support and confidence extract meaningful patterns based on the structure of the patterns, while subjective measures such as unexpectedness and novelty reflect the user perspective. In this report, we try to brief the more widely spread and successful subjective measures and propose a new subjective measure of interestingness, i.e. shocking.

Project Complexity Indices based on Topology Features

The heuristic decision rules used for project scheduling will vary depending upon the project-s size, complexity, duration, personnel, and owner requirements. The concept of project complexity has received little detailed attention. The need to differentiate between easy and hard problem instances and the interest in isolating the fundamental factors that determine the computing effort required by these procedures inspired a number of researchers to develop various complexity measures. In this study, the most common measures of project complexity are presented. A new measure of project complexity is developed. The main privilege of the proposed measure is that, it considers size, shape and logic characteristics, time characteristics, resource demands and availability characteristics as well as number of critical activities and critical paths. The degree of sensitivity of the proposed measure for complexity of project networks has been tested and evaluated against the other measures of complexity of the considered fifty project networks under consideration in the current study. The developed measure showed more sensitivity to the changes in the network data and gives accurate quantified results when comparing the complexities of networks.

Improving Image Quality in Remote Sensing Satellites using Channel Coding

Among other factors that characterize satellite communication channels is their high bit error rate. We present a system for still image transmission over noisy satellite channels. The system couples image compression together with error control codes to improve the received image quality while maintaining its bandwidth requirements. The proposed system is tested using a high resolution satellite imagery simulated over the Rician fading channel. Evaluation results show improvement in overall system including image quality and bandwidth requirements compared to similar systems with different coding schemes.

Quality of Concrete of Recent Development Projects in Libya

Numerous concrete structures projects are currently running in Libya as part of a US$50 billion government funding. The quality of concrete used in 20 different construction projects were assessed based mainly on the concrete compressive strength achieved. The projects are scattered all over the country and are at various levels of completeness. For most of these projects, the concrete compressive strength was obtained from test results of a 150mm standard cube mold. Statistical analysis of collected concrete compressive strengths reveals that the data in general followed a normal distribution pattern. The study covers comparison and assessment of concrete quality aspects such as: quality control, strength range, data standard deviation, data scatter, and ratio of minimum strength to design strength. Site quality control for these projects ranged from very good to poor according to ACI214 criteria [1]. The ranges (Rg) of the strength (max. strength – min. strength) divided by average strength are from (34% to 160%). Data scatter is measured as the range (Rg) divided by standard deviation () and is found to be (1.82 to 11.04), indicating that the range is ±3σ. International construction companies working in Libya follow different assessment criteria for concrete compressive strength in lieu of national unified procedure. The study reveals that assessments of concrete quality conducted by these construction companies usually meet their adopted (internal) standards, but sometimes fail to meet internationally known standard requirements. The assessment of concrete presented in this paper is based on ACI, British standards and proposed Libyan concrete strength assessment criteria.

Estimation of Shock Velocity and Pressure of Detonations and Finding Their Flow Parameters

In this paper, mathematical modeling of detonation in the ground is studied. Estimation of flow parameters such as velocity, maximum velocity, acceleration, maximum acceleration, shock pressure as a result of an explosion in the ground have been computed in an appropriate dynamic model approach. The variation of these parameters with the diameter of detonation place (L), density of earth or stone (¤ü), time decay of detonation (T), peak pressure (Pm), and time (t) have been analyzed. The model has been developed from the concept of underwater explosions [Refs. [1]-[3]] with appropriate changes to the present model requirements.

A Discrete Choice Modeling Approach to Modular Systems Design

The paper proposes an approach for design of modular systems based on original technique for modeling and formulation of combinatorial optimization problems. The proposed approach is described on the example of personal computer configuration design. It takes into account the existing compatibility restrictions between the modules and can be extended and modified to reflect different functional and users- requirements. The developed design modeling technique is used to formulate single objective nonlinear mixedinteger optimization tasks. The practical applicability of the developed approach is numerically tested on the basis of real modules data. Solutions of the formulated optimization tasks define the optimal configuration of the system that satisfies all compatibility restrictions and user requirements.

Interactive Compromise Approach with Particle Swarm Optimization for Environmental/Economic Power Dispatch

In this paper, an Interactive Compromise Approach with Particle Swarm Optimization(ICA-PSO) is presented to solve the Economic Emission Dispatch(EED) problem. The cost function and emission function are modeled as the nonsmooth functions, respectively. The bi-objective including both the minimization of cost and emission is formulated in this paper. ICA-PSO is proposed to solve EED problem for finding a better compromise solution. The solution methodology can offer a global or near-global solution for decision-making requirements. The effectiveness and efficiency of ICA-PSO are demonstrated by a sample test system. Test results can be shown that the proposed method provide a practical and flexible framework for power dispatch.

Downlink Scheduling and Radio Resource Allocation in Adaptive OFDMA Wireless Communication Systems for User-Individual QoS

In this paper, we address the problem of adaptive radio resource allocation (RRA) and packet scheduling in the downlink of a cellular OFDMA system, and propose a downlink multi-carrier proportional fair (MPF) scheduler and its joint with adaptive RRA algorithm to distribute radio resources among multiple users according to their individual QoS requirements. The allocation and scheduling objective is to maximize the total throughput, while at the same time maintaining the fairness among users. The simulation results demonstrate that the methods presented provide for user more explicit fairness relative to RRA algorithm, but the joint scheme achieves the higher sum-rate capacity with flexible parameters setting compared with MPF scheduler.

A Survey on Supply Chain Management and E Commerce Technology Adoption among Logistics Service Providers in Johor

Logistics is part of the supply chain processes that plans, implements, and controls the efficient and effective forward and reverse flow and storage of goods, services, and related information between the point of origin and the point of consumption in order to meet customer requirements. This research aims to investigate the current status and future direction of the use of Information Technology (IT) for logistics, focusing on Supply Chain Management (SCM) and E-Commerce adoption in Johor. Therefore, this research stresses on the type of technology being adopted, factors, benefits and barriers affecting the innovation in SCM and ECommerce technology adoption among Logistics Service Providers (LSP). A mailed questionnaire survey was conducted to collect data from 265 logistics companies in Johor. The research revealed that SCM technology adoption among LSP was higher as they had adopted SCM technology in various business processes while they perceived a high level of benefits from SCM adoption. Obviously, ECommerce technology adoption among LSP is relatively low.

UWB Bowtie Slot Antenna for Breast Cancer Detection

UWB is a very attractive technology for many applications. It provides many advantages such as fine resolution and high power efficiency. Our interest in the current study is the use of UWB radar technique in microwave medical imaging systems, especially for early breast cancer detection. The Federal Communications Commission FCC allowed frequency bandwidth of 3.1 to 10.6 GHz for this purpose. In this paper we suggest an UWB Bowtie slot antenna with enhanced bandwidth. Effects of varying the geometry of the antenna on its performance and bandwidth are studied. The proposed antenna is simulated in CST Microwave Studio. Details of antenna design and simulation results such as return loss and radiation patterns are discussed in this paper. The final antenna structure exhibits good UWB characteristics and has surpassed the bandwidth requirements.

Modular Workflow System for HPC Applications

Nowadays, HPC, Grid and Cloud systems are evolving very rapidly. However, the development of infrastructure solutions related to HPC is lagging behind. While the existing infrastructure is sufficient for simple cases, many computational problems have more complex requirements.Such computational experiments use different resources simultaneously to start a large number of computational jobs.These resources are heterogeneous. They have different purposes, architectures, performance and used software.Users need a convenient tool that allows to describe and to run complex computational experiments under conditions of HPC environment. This paper introduces a modularworkflow system called SEGL which makes it possible to run complex computational experiments under conditions of a real HPC organization. The system can be used in a great number of organizations, which provide HPC power. Significant requirements to this system are high efficiency and interoperability with the existing HPC infrastructure of the organization without any changes.

A Software-Supported Methodology for Designing General-Purpose Interconnection Networks for Reconfigurable Architectures

Modern applications realized onto FPGAs exhibit high connectivity demands. Throughout this paper we study the routing constraints of Virtex devices and we propose a systematic methodology for designing a novel general-purpose interconnection network targeting to reconfigurable architectures. This network consists of multiple segment wires and SB patterns, appropriately selected and assigned across the device. The goal of our proposed methodology is to maximize the hardware utilization of fabricated routing resources. The derived interconnection scheme is integrated on a Virtex style FPGA. This device is characterized both for its high-performance, as well as for its low-energy requirements. Due to this, the design criterion that guides our architecture selections was the minimal Energy×Delay Product (EDP). The methodology is fully-supported by three new software tools, which belong to MEANDER Design Framework. Using a typical set of MCNC benchmarks, extensive comparison study in terms of several critical parameters proves the effectiveness of the derived interconnection network. More specifically, we achieve average Energy×Delay Product reduction by 63%, performance increase by 26%, reduction in leakage power by 21%, reduction in total energy consumption by 11%, at the expense of increase of channel width by 20%.

Combining the Description Features of UMLRT and CSP+T Specifications Applied to a Complete Design of Real-Time Systems

UML is a collection of notations for capturing a software system specification. These notations have a specific syntax defined by the Object Management Group (OMG), but many of their constructs only present informal semantics. They are primarily graphical, with textual annotation. The inadequacies of standard UML as a vehicle for complete specification and implementation of real-time embedded systems has led to a variety of competing and complementary proposals. The Real-time UML profile (UML-RT), developed and standardized by OMG, defines a unified framework to express the time, scheduling and performance aspects of a system. We present in this paper a framework approach aimed at deriving a complete specification of a real-time system. Therefore, we combine two methods, a semiformal one, UML-RT, which allows the visual modeling of a realtime system and a formal one, CSP+T, which is a design language including the specification of real-time requirements. As to show the applicability of the approach, a correct design of a real-time system with hard real time constraints by applying a set of mapping rules is obtained.

Understanding Work Integrated Learning in ICT: A Systems Perspective

Information and communication technology (ICT) is essential to the operation of business, and create many employment opportunities. High volumes of students graduate in ICT however students struggle to find job placement. A discrepancy exists between graduate skills and industry skill requirements. To address the need for ICT skills required, universities must create programs to meet the demands of a changing ICT industry. This requires a partnership between industry, universities and other stakeholders. This situation may be viewed as a critical systems thinking problem situation as there are various role players each with their own needs and requirements. Jackson states a typical critical systems methods has a pluralistic nature. This paper explores the applicability and suitability of Maslow and Dooyeweerd to guide understanding and make recommendations for change in ICT WIL, to foster an all-inclusive understanding of the situation by stakeholders. The above methods provide tools for understanding softer issues beyond the skills required. The study findings suggest that besides skills requirements, a deeper understanding and empowering students from being a student to a professional need to be understood and addressed.

SATA: A Web Based Scheduling Support System

Developing a university course schedule is difficult. This is due to the limitations in the resources available. The process is made even harder with different faculties or departments having different ways of stating their schedule requirements. The person in charge of taking the schedule requirements and turning them into a proper course schedule is not only burden with the task of allocating the appropriate classes and time to lecturers and students, they also need to understand the schedule requirements. Therefore a scheduling support system named SATA is developed to assist ICRESS in the course scheduling process. SATA has been put to use for several semesters and the results have been encouraging. It won a bronze medal in the 2008 Invention, Innovation and Design competition (IID-08) and has been submitted to be patented in October 2008