Development of an Adhesive from Prosopis africana Seed Endosperm (Okpeyi)

This research work is an experimental study, through development of an adhesive from Prosopis africana endosperm. The prosopis seed for this work were obtained from Enugu State in the South East part of Nigeria. The seeds were prepared by separating the endosperm from the seed coat and cotyledon. Three methods were used to separate them, which are acidic method, roasting method and boiling method. 20g of seed were treated with different concentrations (25, 40, 55, 70, and 85% w/w) at 100°C and constant time (30 minutes), under continuous stirring with magnetic stirrer. Also 20g of seed were treated with sulphuric acid of concentrations 40% w/w at 100°C with different time (10, 15, 20, 25, 30 minutes), under continuous stirring with magnetic stirrer. Finally, 20g of seed were treated with sulphuric acid of concentrations 40% w/w at different temperature (20°C, 40°C, 60°C, 80°C, and 100°C) with constant time (30 minutes), under continuous stirring with magnetic stirrer. The whole endosperm extracted was adhesive. The physical properties of the adhesive were determined (appearance, odour, taste, solubility, pH, size, and binding strength). The percentage of the adhesive yield makes the commercialization of the seed in Nigeria possible and profitable. The very high viscosity attained at low concentrations makes prosopis adhesive an excellent thickener in the food industry.

Predicting the Adsorptive Capacities of Biosolid as a Barrier in Soil to Remove Industrial Contaminants

The major environmental risk of soil pollution is the contamination of groundwater by infiltration of organic and inorganic pollutants which can cause a serious menace. To prevent this risk and to protect the groundwater, we proceeded in this study to test the reliability of a biosolid as barrier to prevent the migration of very dangerous pollutants as ‘Cadmium’ through the different soil layers. In this study, we tried to highlight the effect of several parameters such as: turbidity (different cycle of Hydration/Dehydration), rainfall, effect of initial Cd(II) concentration and the type of soil. These parameters allow us to find the most effective manner to integrate this barrier in the soil. From the results obtained, we found a significant effect of the barrier. Indeed, the recorded passing quantities are lowest for the highest rainfall; we noted also that the barrier has a better affinity towards higher concentrations; the most retained amounts of cadmium has been in the top layer of the two types of soil tested, while the lowest amounts of cadmium are recorded in the bottom layers of soils.

Thermo-Physical Properties and Solubility of CO2 in Piperazine Activated Aqueous Solutions of β-Alanine

Carbon dioxide is one of the major greenhouse gas (GHG) contributors. It is an obligation of the industry to reduce the amount of carbon dioxide emission to the acceptable limits. Tremendous research and studies are reported in the past and still the quest to find the suitable and economical solution of this problem needed to be explored in order to develop the most plausible absorber for carbon dioxide removal. Amino acids can be potential alternate solvents for carbon dioxide capture from gaseous streams. This is due to its ability to resist oxidative degradation, low volatility and its ionic structure. In addition, the introduction of promoter-like piperazine to amino acid helps to further enhance the solubility. In this work, the effect of piperazine on thermo physical properties and solubility of β-Alanine aqueous solutions were studied for various concentrations. The measured physicochemical properties data was correlated as a function of temperature using least-squares method and the correlation parameters are reported together with it respective standard deviations. The effect of activator piperazine on the CO2 loading performance of selected amino acid under high-pressure conditions (1bar to 10bar) at temperature range of (30 to 60)oC was also studied. Solubility of CO2 decreases with increasing temperature and increases with increasing pressure. Quadratic representation of solubility using Response Surface Methodology (RSM) shows that the most important parameter to optimize solubility is system pressure. The addition of promoter increases the solubility effect of the solvent.

Risk Assessment of Trace Element Pollution in Gymea Bay, NSW, Australia

The main purpose of this study is to assess the sediment quality and potential ecological risk in marine sediments in Gymea Bay located in south Sydney, Australia. A total of 32 surface sediment samples were collected from the bay. Current track trajectories and velocities have also been measured in the bay. The resultant trace elements were compared with the adverse biological effect values Effect Range Low (ERL) and Effect Range Median (ERM) classifications. The results indicate that the average values of chromium, arsenic, copper, zinc, and lead in surface sediments all reveal low pollution levels and are below ERL and ERM values. The highest concentrations of trace elements were found close to discharge points and in the inner bay, and were linked with high percentages of clay minerals, pyrite and organic matter, which can play a significant role in trapping and accumulating these elements. The lowest concentrations of trace elements were found to be on the shoreline of the bay, which contained high percentages of sand fractions. It is postulated that the fine particles and trace elements are disturbed by currents and tides, then transported and deposited in deeper areas. The current track velocities recorded in Gymea Bay had the capability to transport fine particles and trace element pollution within the bay. As a result, hydrodynamic measurements were able to provide useful information and to help explain the distribution of sedimentary particles and geochemical properties. This may lead to knowledge transfer to other bay systems, including those in remote areas. These activities can be conducted at a low cost, and are therefore also transferrable to developing countries. The advent of portable instruments to measure trace elements in the field has also contributed to the development of these lower cost and easily applied methodologies available for use in remote locations and low-cost economies.

Effect of Parenteral Administration of Vitamin A in Late Pregnant Cows on Vitamin A Status of Neonatal Calves

To evaluate the effect of intramuscular administration of vitamin A in pregnant dairy cows during late stages of pregnancy, on vitamin A status of neonatal calves, a total of 30 cows were randomly selected and divided into three groups; two treatment groups and one control group. Single intramuscular injection of 2000000 IU vitamin A; was carried in 10 dairy cows at 7 months of pregnancy (group 1). In second group of treated animals (10 cows) the injection was performed in 8 months of pregnancy (group 2). Ten pregnant dairy cows were received saline injection as placebo and selected as control group. Blood samples were collected from experimental dairy cows at 7 and 8 months of pregnancy as well as their newborn calves’ pre and after colostrum intake. There was no significant difference between vitamin A and β-carotene concentration of dairy cows of three groups in two last months of pregnancy (P> 0.05). Vitamin A concentration of calves of two treatment groups before and after receiving of colostrum were significantly higher than that in control group (P< 0.05). There was no significant difference between serum concentrations of vitamin A in calves of two treated groups (P> 0.05). β-Carotene concentration of serum samples of dairy cows and neonatal calves of three groups were not significantly different as compared with together. From results of the present study it can be concluded that single injection of vitamin A during at 7 or 8 month of pregnancy can significantly increase level of vitamin A in their colostrum and neonatal calves.

Gold Nanoparticle: Synthesis, Characterization, Clinico-Pathological, Pathological, and Bio-Distribution Studies in Rabbits

This study evaluated the acute toxicity and tissue distribution of intravenously administered gold nanoparticles (AuNPs) in male rabbits. Rabbits were exposed to single dose of AuNPs (300 μg/ kg). Toxic effects were assessed via general behavior, hematological parameters, serum biochemical parameters, and histopathological examination of various rabbits’ organs. Inductively coupled plasma–mass spectrometry (ICP-MS) was used to determine gold concentrations in tissue samples collected at predetermined time intervals. After one week, AuNPs exerted no obvious acute toxicity in rabbits. However, inflammatory reactions were observed in liver, lungs and kidneys accompanied with mild absolute neutrophilia and significant monocytosis. The highest gold levels were found in the spleen and liver followed by lungs, and kidneys. These results indicated that AuNPs could be distributed extensively to various tissues in the body, but primarily in the spleen and liver.

A DNA-Based Nanobiosensor for the Rapid Detection of the Dengue Virus in Mosquito

This paper describes the development of a DNA-based nanobiosensor to detect the dengue virus in mosquito using electrically active magnetic (EAM) nanoparticles as concentrator and electrochemical transducer. The biosensor detection encompasses two sets of oligonucleotide probes that are specific to the dengue virus: the detector probe labeled with the EAM nanoparticles and the biotinylated capture probe. The DNA targets are double hybridized to the detector and the capture probes and concentrated from nonspecific DNA fragments by applying a magnetic field. Subsequently, the DNA sandwiched targets (EAM-detector probe– DNA target–capture probe-biotin) are captured on streptavidin modified screen printed carbon electrodes through the biotinylated capture probes. Detection is achieved electrochemically by measuring the oxidation–reduction signal of the EAM nanoparticles. Results indicate that the biosensor is able to detect the redox signal of the EAM nanoparticles at dengue DNA concentrations as low as 10 ng/μl.

Phage Capsid for Efficient Delivery of Cytotoxic Drugs

Various nanomaterials can be used as a drug delivery vehicles in nanomedicine, called nanocarriers. They can either be organic or inorganic, synthetic or natural-based. Although synthetic nanocarriers are easier to produce, they can often be toxic for the organism and thus not suitable for use in treatment. From naturalbased nanocarriers, the most commonly used are protein cages or viral capsids. In this work, virus bacteriophage λ was used for delivery of different cytotoxic drugs (cisplatin, carboplatin, oxaliplatin and doxorubicin). Large quantities of phage λ were obtained from phage λ-producing strain of E. coli cultivated in medium with 0.2% maltose. After killing of E. coli with chloroform and its removal by centrifugation, the phage was concentrated by ultracentrifugation at 130 000×g and 4°C for 3 h. The encapsulation of the drugs was performed by infusion method and four different concentrations of the drugs were encapsulated (200; 100; 50; 25 μg·mL-1). Free drug molecules were removed by filtration. The encapsulation was verified using the absorbance for doxorubicin and atomic absorption spectrometry for platinum cytostatics. The amount of encapsulated drug linearly increased with the increasing concentration of applied drug with the determination coefficient R2=0.989 for doxorubicin; R2=0.967 for cisplatin; R2=0.989 for carboplatin and R2=0.996 for oxaliplatin. The overall encapsulation efficiency was calculated as 50% for doxorubicin; 8% for cisplatin; 6% for carboplatin and 10% for oxaliplatin.

Laser-Ultrasonic Method for Measuring the Local Elastic Moduli of Porous Isotropic Composite Materials

The laser-ultrasonic method is realized for quantifying the influence of porosity on the local Young’s modulus of isotropic composite materials. The method is based on a laser thermooptical method of ultrasound generation combined with measurement of the phase velocity of longitudinal and shear acoustic waves in samples. The main advantage of this method compared with traditional ultrasonic research methods is the efficient generation of short and powerful probing acoustic pulses required for reliable testing of ultrasound absorbing and scattering heterogeneous materials. Using as an example samples of a metal matrix composite with reinforcing microparticles of silicon carbide in various concentrations, it is shown that to provide an effective increase in Young’s modulus with increasing concentration of microparticles, the porosity of the final sample should not exceed 2%.

Image-Based (RBG) Technique for Estimating Phosphorus Levels of Crops

In this glasshouse study, we developed a new imagebased non-destructive technique for detecting leaf P status of different crops such as cotton, tomato and lettuce. The plants were grown on a nutrient solution containing different P concentrations, e.g. 0%, 50% and 100% of recommended P concentration (P0 = no P, L; P1 = 2.5 mL 10 L-1 of P and P2 = 5 mL 10 L-1 of P). After 7 weeks of treatment, the plants were harvested and data on leaf P contents were collected using the standard destructive laboratory method and at the same time leaf images were collected by a handheld crop image sensor. We calculated leaf area, leaf perimeter and RGB (red, green and blue) values of these images. These data were further used in linear discriminant analysis (LDA) to estimate leaf P contents, which successfully classified these plants on the basis of leaf P contents. The data indicated that P deficiency in crop plants can be predicted using leaf image and morphological data. Our proposed nondestructive imaging method is precise in estimating P requirements of different crop species.

The Influence of Organic Waste on Vegetable Nutritional Components and Healthy Livelihood, Minna, Niger State, Nigeria

Household waste form a larger proportion of waste generated across the state, accumulation of organic waste is an apparent problem and the existing dump sites could be overstress. Niger state has abundant arable land and water resources thus should be one of the highest producers of agricultural crops in the country. However, the major challenge to agricultural sector today is loss of soil nutrient coupled with high cost of fertilizer. These have continued to increase the use of fertilizer and decomposed solid waste for enhance agricultural yield, which have varying effects on the soil as well a threat to human livelihood. Consequently, vegetable yield samples from poultry droppings, decomposed household waste manure, NPK treatments and control from each replication were subjected to proximate analysis to determine the nutritional and antinutritional component as well as heavy metal concentration. Data collected was analyzed using SPSS software and Randomized complete Block Design means were compared. The result shows that the treatments do not devoid the concentrations of any nutritional components while the anti-nutritional analysis proved that NPK had higher oxalate content than control and organic treats. The concentration of lead and cadmium are within safe permissible level while the mercury level exceeded the FAO/WHO maximum permissible limit for the entire treatments depicts the need for urgent intervention to minimize mercury levels in soil and manure in order to mitigate its toxic effect. Thus, eco-agriculture should be widely accepted and promoted by the stakeholders for soil amendment, higher yield, strategies for sustainable environmental protection, food security, poverty eradication, attainment of sustainable development and healthy livelihood.

A Modelling Study of the Photochemical and Particulate Pollution Characteristics above a Typical Southeast Mediterranean Urban Area

The Greater Athens Area (GAA) faces photochemical and particulate pollution episodes as a result of the combined effects of local pollutant emissions, regional pollution transport, synoptic circulation and topographic characteristics. The area has undergone significant changes since the Athens 2004 Olympic Games because of large scale infrastructure works that lead to the shift of population to areas previously characterized as rural, the increase of the traffic fleet and the operation of highways. However, few recent modelling studies have been performed due to the lack of an accurate, updated emission inventory. The photochemical modelling system MM5/CAMx was applied in order to study the photochemical and particulate pollution characteristics above the GAA for two distinct ten-day periods in the summer of 2006 and 2010, where air pollution episodes occurred. A new updated emission inventory was used based on official data. Comparison of modeled results with measurements revealed the importance and accuracy of the new Athens emission inventory as compared to previous modeling studies. The model managed to reproduce the local meteorological conditions, the daily ozone and particulates fluctuations at different locations across the GAA. Higher ozone levels were found at suburban and rural areas as well as over the sea at the south of the basin. Concerning PM10, high concentrations were computed at the city centre and the southeastern suburbs in agreement with measured data. Source apportionment analysis showed that different sources contribute to the ozone levels, the local sources (traffic, port activities) affecting its formation.

Antioxidant Properties, Ascorbic Acid and Total Carotenoid Values of Sweet and Hot Red Pepper Paste: A Traditional Food in Turkish Diet

Red pepper (Capsicum annum L.) has long been recognized as a good source of antioxidants, being rich in ascorbic acid and other phytochemicals. In Turkish cuisine red pepper is sometimes consumed raw in salads and baked as a garnish, but its most wide consumption type is red pepper paste. The processing of red pepper into pepper paste includes various thermal treatment steps such as heating and pasteurizing. There are reports demonstrating an enhancement or reduction in antioxidant activity of vegetables after thermal treatment. So this study was conducted to investigate the total phenolic, ascorbic acid and total carotenoids as well as free radical scavenging activity of raw red pepper and various red pepper pastes obtainable on the market. The samples were analyzed for radical-scavenging activity (RSA) and total polyphenol (TP) content using 1,1-diphenyl-2-picrylhydrazyl (DPPH) and Folin-Ciocalteu methods, respectively. Total carotenoids and ascorbic acid contents were determined spectrophotometrically. Results suggest that hot pepper paste contained significantly (P0.05) difference in RSA, ascorbic acid and total carotenoids content between sweet and hot red pepper paste products. It is concluded that the red pepper paste, that has a wide range of consumption in Turkish cuisine, presents a good dose of phenolic compounds and antioxidant capacity and it should be regarded as a functional food.

In vitro Environmental Factors Controlling Root Morphological Traits of Pineapple (Ananas comosus L. Merr)

Developing our knowledge of when pineapple roots grow can lead to improved water, fertilizer applications, and more precise culture management. This paper presents current understanding of morphological traits in pineapple roots, highlighting studies using incubation periods and various solid MS media treated with different sucrose concentrations and pH, which directly assess in vitro environmental factors. Rooting parameters had different optimal sucrose concentrations and incubation periods. All shoots failed to root in medium supplemented with sucrose at 5 g/L and no roots formed within the first 45 days in medium enriched with sucrose at 10 g/L. After 75 days, all shoots rooted in medium enriched with 10 and 20 g/L sucrose. Moreover, MS medium supplied with 20 g/L sucrose resulted in the longest and the highest number of roots with 27.3 mm and 4.7, respectively. Root function, such as capacity for P and N uptake, declined rapidly with root length. As a result, the longer the incubation period, the better the rooting responses would be.

Fiber Optic Sensors for Hydrogen Peroxide Vapor Measurement

This paper reports on the response of a fiber-optic sensing probe to small concentrations of hydrogen peroxide (H2O2) vapor at room temperature. H2O2 has extensive applications in industrial and medical environments. Conversely, H2O2 can be a health hazard by itself. For example, H2O2 induces cellular damage in human cells and its presence can be used to diagnose illnesses such as asthma and human breast cancer. Hence, development of reliable H2O2 sensor is of vital importance to detect and measure this species. Ferric ferrocyanide, referred to as Prussian Blue (PB), was deposited on the tip of a multimode optical fiber through the single source precursor technique and served as an indicator of H2O2 in a spectroscopic manner. Sensing tests were performed in H2O2-H2O vapor mixtures with different concentrations of H2O2. The results of sensing tests show the sensor is able to detect H2O2 concentrations in the range of 50.6 ppm to 229.5 ppm. Furthermore, the sensor response to H2O2 concentrations is linear in a log-log scale with the adjacent R-square of 0.93. This sensing behavior allows us to detect and quantify the concentration of H2O2 in the vapor phase.

Alleviation of Adverse Effects of Salt Stress on Soybean (Glycine max. L.) by Using Osmoprotectants and Organic Nutrients

Salinity is one of the major factors limiting crop production in an arid environment. Despite its global importance soybean production suffer the problems of salinity stress causing damages at plant development. So it is implacable to either search for salinity enhancement of soybean plants. Therefore, in the current study we try to clarify the mechanism that might be involved in the ameliorating effects of osmo-protectants such as proline and glycine betaine as well as, compost application on soybean plants grown under salinity stress. The experiment was conducted under greenhouse conditions at the Graduate School of Biosphere Science Laboratory of Hiroshima University, Japan in 2011. The experiment was designed as a spilt-split plot based on randomized complete block design with four replications. The treatments could be summarized as follows; (i) salinity concentrations (0 and 15 mM), (ii) compost treatments (0 and 24 t ha-1) and (iii) the exogenous, proline and glycine betaine concentrations (0 mM and 25 mM) for each. Results indicated that salinity stress induced reduction in growth and physiological aspects (dry weight per plant, chlorophyll content, N and K+ content) of soybean plant compared with those of the unstressed plants. On the other hand, salinity stress led to increases in the electrolyte leakage ratio, Na and proline contents. Special attention was paid to, the tolerance against salt stress was observed, the improvement of salt tolerance resulted from proline, glycine betaine and compost were accompanied with improved K+, and proline accumulation. While, significantly decreased electrolyte leakage ratio and Na+ content. These results clearly demonstrate that harmful effect of salinity could reduce on growth aspects of soybean. Consequently, exogenous osmoprotectants combine with compost will effectively solve seasonal salinity stress problem and are a good strategy to increase salinity resistance of soybean in the drylands.

Extraction, Characterization and Application of Natural Dyes from the Fresh Rind of Index Colour 5 Mangosteen (Garcinia mangostana L.)

This study was to explore and utilize the fresh rind of mangosteen Index Colour 5 as an upcoming raw material for the production of natural dyes. Rind from the fresh mangosteen Index Colour 5 was utilized to extract the dyes. The established extracts were experimented on silk fabrics via three types of mordanting and dyeing procedures; pre-mordanting, simultaneous mordanting and post-mordanting. As a result, the applications of the freeze-drying methodology and mechanizable equipment have helped to produce excellent range of natural colours. Silk fabric treated simultaneously with mordanting and dyeing with extract dye Index Colour 5 produced a brilliant shade of the red colour and the colour from this index is also discovered sensitive to light and washing during the fastness tests. The preliminary evaluation and instrumentation analysis allowed us to examine whether the application of different mordanting and dyeing procedures with the same extract samples and concentrations affected the colours and shades of the fabric samples.

Inhibition of Pipelines Corrosion Using Natural Extracts

The present work is aimed at examining carbon steel oil pipelines corrosion using three natural extracts (Eruca Sativa, Rosell and Mango peels) that are used as inhibitors of different concentrations ranging from 0.05-0.1wt. %. Two sulphur compounds are used as corrosion mediums. Weight loss method was used for measuring the corrosion rate of the carbon steel specimens immersed in technical white oil at 100ºC at various time intervals in absence and presence of the two sulphur compounds. The corroded specimens are examined using the chemical wear test, scratch test and hardness test. The scratch test is carried out using scratch loads from 0.5 Kg to 2.0 Kg. The scratch width is obtained at various scratch load and test conditions. The Brinell hardness test is carried out and investigated for both corroded and inhibited specimens. The results showed that three natural extracts can be used as environmentally friendly corrosion inhibitors.

Numerical Simulation of the Air Pollutants Dispersion Emitted by CHP Using ANSYS CFX

This paper presents the results obtained by numerical simulation using the software ANSYS CFX-CFD for the air pollutants dispersion in the atmosphere coming from the evacuation of combustion gases resulting from the fuel combustion in an electric thermal power plant. The model uses the Navier-Stokes equation to simulate the dispersion of pollutants in the atmosphere. It is considered as important factors in elaboration of simulation the atmospheric conditions (pressure, temperature, wind speed, wind direction), the exhaust velocity of the combustion gases, chimney height and the obstacles (buildings). Using the air quality monitoring stations it is measured the concentrations of main pollutants (SO2, NOx and PM). The pollutants were monitored over a period of 3 months, after that the average concentration are calculated, which is used by the software. The concentrations are: 8.915 μg/m3 (NOx), 9.587 μg/m3 (SO2) and 42 μg/m3 (PM). A comparison of test data with simulation results demonstrated that CFX was able to describe the dispersion of the pollutant as well the concentration of this pollutants in the atmosphere.

Comparison of Microwave-Assisted and Conventional Leaching for Extraction of Copper from Chalcopyrite Concentrate

Chalcopyrite (CuFeS2) is the most common primary mineral used for the commercial production of copper. The low dissolution efficiency of chalcopyrite in sulfate media has prevented an efficient industrial leaching of this mineral in sulfate media. Ferric ions, bacteria, oxygen and other oxidants have been used as oxidizing agents in the leaching of chalcopyrite in sulfate and chloride media under atmospheric or pressure leaching conditions. Two leaching methods were studied to evaluate chalcopyrite (CuFeS2) dissolution in acid media. First, the conventional oxidative acid leaching method was carried out using sulfuric acid (H2SO4) and potassium dichromate (K2Cr2O7) as oxidant at atmospheric pressure. Second, microwave-assisted acid leaching was performed using the microwave accelerated reaction system (MARS) for same reaction media. Parameters affecting the copper extraction such as leaching time, leaching temperature, concentration of H2SO4 and concentration of K2Cr2O7 were investigated. The results of conventional acid leaching experiments were compared to the microwave leaching method. It was found that the copper extraction obtained under high temperature and high concentrations of oxidant with microwave leaching is higher than those obtained conventionally. 81% copper extraction was obtained by the conventional oxidative acid leaching method in 180 min, with the concentration of 0.3 mol/L K2Cr2O7 in 0.5M H2SO4 at 50 ºC, while 93.5% copper extraction was obtained in 60 min with microwave leaching method under same conditions.