Information Overload, Information Literacy and Use of Technology by Students

The development of web technologies and mobile devices makes creating, accessing, using and sharing information or communicating with each other simpler every day. However, while the amount of information constantly increasing it is becoming harder to effectively organize and find quality information despite the availability of web search engines, filtering and indexing tools. Although digital technologies have overall positive impact on students’ lives, frequent use of these technologies and digital media enriched with dynamic hypertext and hypermedia content, as well as multitasking, distractions caused by notifications, calls or messages; can decrease the attention span, make thinking, memorizing and learning more difficult, which can lead to stress and mental exhaustion. This is referred to as “information overload”, “information glut” or “information anxiety”. Objective of this study is to determine whether students show signs of information overload and to identify the possible predictors. Research was conducted using a questionnaire developed for the purpose of this study. The results show that students frequently use technology (computers, gadgets and digital media), while they show moderate level of information literacy. They have sometimes experienced symptoms of information overload. According to the statistical analysis, higher frequency of technology use and lower level of information literacy are correlated with larger information overload. The multiple regression analysis has confirmed that the combination of these two independent variables has statistically significant predictive capacity for information overload. Therefore, the information science teachers should pay attention to improving the level of students’ information literacy and educate them about the risks of excessive technology use.

Tuning for a Small Engine with a Supercharger

The formula project of Kinki University has been involved in the student Formula SAE of Japan (JSAE) since the second year the competition was held. The vehicle developed in the project uses a ZX-6R engine, which has been manufactured by Kawasaki Heavy Industries for the JSAE competition for the eighth time. The limited performance of the concept vehicle was improved through the development of a power train. The supercharger loading, engine dry sump, and engine cooling management of the vehicle were also enhanced. The supercharger loading enabled the vehicle to achieve a maximum output of 59.6 kW (80.6 PS)/9000 rpm and a maximum torque of 70.6 Nm (7.2 kgf m)/8000 rpm. We successfully achieved 90% of the engine’s torque band (4000–10000 rpm) with 50% of the revolutions in regular engine use (2000–12000 rpm). Using a dry sump system, we periodically managed hydraulic pressure during engine operation. A system that controls engine stoppage when hydraulic pressure falls was also constructed. Using the dry sump system at 80 mm reduced the required engine load and the vehicle’s center of gravity. Even when engine motion was suspended by the electromotive force exerted by the water pump, the circulation of cooling water was still possible. These findings enabled us to create a cooling system in accordance with the requirements of the competition.

An Improved Approach for Hybrid Rocket Injection System Design

Hybrid propulsion combines beneficial properties of both solid and liquid rockets, such as multiple restarts, throttability as well as simplicity and reduced costs. A nitrous oxide (N2O)/paraffin-based hybrid rocket engine demonstrator is currently under development at the Italian Aerospace Research Center (CIRA) within the national research program HYPROB, funded by the Italian Ministry of Research. Nitrous oxide belongs to the class of self-pressurizing propellants that exhibit a high vapor pressure at standard ambient temperature. This peculiar feature makes those fluids very attractive for space rocket applications because it avoids the use of complex pressurization systems, leading to great benefits in terms of weight savings and reliability. To avoid feed-system-coupled instabilities, the phase change is required to occur through the injectors. In this regard, the oxidizer is stored in liquid condition while target chamber pressures are designed to lie below vapor pressure. The consequent cavitation and flash vaporization constitute a remarkably complex phenomenology that arises great modelling challenges. Thus, it is clear that the design of the injection system is fundamental for the full exploitation of hybrid rocket engine throttability. The Analytical Hierarchy Process has been used to select the injection architecture as best compromise among different design criteria such as functionality, technology innovation and cost. The impossibility to use engineering simplified relations for the dimensioning of the injectors led to the needs of applying a numerical approach based on OpenFOAM®. The numerical tool has been validated with selected experimental data from literature. Quantitative, as well as qualitative comparisons are performed in terms of mass flow rate and pressure drop across the injector for several operating conditions. The results show satisfactory agreement with the experimental data. Modeling assumptions, together with their impact on numerical predictions are discussed in the paper. Once assessed the reliability of the numerical tool, the injection plate has been designed and sized to guarantee the required amount of oxidizer in the combustion chamber and therefore to assure high combustion efficiency. To this purpose, the plate has been designed with multiple injectors whose number and diameter have been selected in order to reach the requested mass flow rate for the two operating conditions of maximum and minimum thrust. The overall design has been finally verified through three-dimensional computations in cavitating non-reacting conditions and it has been verified that the proposed design solution is able to guarantee the requested values of mass flow rates.

Experimental Study on Mechanical Properties of Commercially Pure Copper Processed by Severe Plastic Deformation Technique-Equal Channel Angular Extrusion

The experiments have been conducted to study the mechanical properties of commercially pure copper processing at room temperature by severe plastic deformation using equal channel angular extrusion (ECAE) through a die of 90oangle up to 3 passes by route BC i.e. rotating the sample in the same direction by 90o after each pass. ECAE is used to produce from existing coarse grains to ultra-fine, equiaxed grains structure with high angle grain boundaries in submicron level by introducing a large amount of shear strain in the presence of hydrostatic pressure into the material without changing billet shape or dimension. Mechanical testing plays an important role in evaluating fundamental properties of engineering materials as well as in developing new materials and in controlling the quality of materials for use in design and construction. Yield stress, ultimate tensile stress and ductility are structure sensitive properties and vary with the structure of the material. Microhardness and tensile tests were carried out to evaluate the hardness, strength and ductility of the ECAE processed materials. The results reveal that the strength and hardness of commercially pure copper samples improved significantly without losing much ductility after each pass.

Effect of Rice Husk Ash on Strength and Durability of High Strength High Performance Concrete

This paper reports the strength and durability properties of high strength high performance concrete incorporating rice husk ash (RHA) having high silica, low carbon content and appropriate fineness. In this study concrete containing 10%, 15% and 20% RHA as cement replacement and water to binder ratio of 0.25 were investigated. The results show that increasing amount of RHA increases the dosage of superplasticizer to maintain similar workability. Partial replacement of cement with RHA did not increase the early age compressive strength of concrete. However, concrete containing RHA showed higher compressive strength at later ages. The results showed that compressive strength of concrete in the 90-115 MPa range can be obtained at 28 curing days and the durability properties of RHA concrete performed better than that of control concrete. The water absorption of concrete incorporating 15% RHA exhibited the lowest value. The porosity of concrete is consistent with water absorption whereby higher replacement of RHA decreased the porosity of concrete. There is a positive correlation between reducing porosity and increasing compressive strength of high strength high performance concrete. The results also indicate that up to 20% of RHA incorporation could be advantageously blended with cement without adversely affecting the strength and durability properties of concrete.

Numerical Evaluation of Shear Strength for Cold-Formed Steel Shear Wall Panel

The stability of structures made of light-gauge steel depends highly on the contribution of Shear Wall Panel (SWP) systems under horizontal forces due to wind or earthquake loads. Steel plate sheathing is often used with these panels made of cold formed steel (CFS) to improve its shear strength. In order to predict the shear strength resistance, two methods are presented in this paper. In the first method, the steel plate sheathing is modeled with plats strip taking into account only the tension and compression force due to the horizontal load, where both track and stud are modeled according to the geometrical and mechanical characteristics of the specimen used in the experiments. The theoretical background and empirical formulations of this method are presented in this paper. However, the second method is based on a micro modeling of the cold formed steel Shear Wall Panel “CFS-SWP” using Abaqus software. A nonlinear analysis was carried out with an in-plan monotonic load. Finally, the comparison between these two methods shows that the micro modeling with Abaqus gives better prediction of shear resistance of SWP than strips method. However, the latter is easier and less time consuming than the micro modeling method.

An Efficient Implementation of High Speed Vedic Multiplier Using Compressors for Image Processing Applications

Digital signal processor, image signal processor and FIR filters have multipliers as an important part of their design. On the basis of Vedic mathematics, Vedic multipliers have come out to be very fast multipliers. One of the image processing applications is edge detection. This research presents a small area and high speed 8 bit Vedic multiplier system comprising of compressor based adders. This results in faster edge detection. This architecture is tested on Xilinx vertex 4 FPGA board and simulations were carried out using the Xilinx synthesis tool. Comparisons are made and this system is found to be smaller in area with high speed (the lesser propagation delay). This compressor based Vedic multiplier is 1.1 times speedier than a typical Vedic multiplier. Also, this Vedic Multiplier is 2 times speedier than a ‘simple’ multiplier.

Modelling the States of Public Client Participation in Public Private Partnership Arrangements

The degree to which a public client actively participates in Public Private Partnership (PPP) schemes, is seen as a determinant of the success of the arrangement, and in particular, efficiency in the delivery of the assets of any infrastructure development. The asset delivery is often an early barometer for judging the overall performance of the PPP. Currently, there are no defined descriptors for the degree of such participation. The lack of defined descriptors makes the association between the degree of participation and efficiency of asset delivery, difficult to establish. This is particularly so if an optimum effect is desired. In addition, such an association is important for the strategic decision to embark on any PPP initiative. This paper presents a conceptual model of different levels of participation that characterise PPP schemes. The modelling was achieved by a systematic review of reported sources that address essential aspects and structures of PPP schemes, published from 2001 to 2015. As a precursor to the modelling, the common areas of Public Client Participation (PCP) were investigated. Equity and risk emerged as two dominant factors in the common areas of PCP, and were therefore adopted to form the foundation of the modelling. The resultant conceptual model defines the different states of combined PCP. The defined states provide a more rational basis for establishing how the degree of PCP affects the efficiency of asset delivery in PPP schemes.

Rotary Machine Sealing Oscillation Frequencies and Phase Shift Analysis

To ensure the gas transmittal GCU's efficient operation, leakages through the labyrinth packings (LP) should be minimized. Leakages can be minimized by decreasing the LP gap, which in turn depends on thermal processes and possible rotor vibrations and is designed to ensure absence of mechanical contact. Vibration mitigation allows to minimize the LP gap. It is advantageous to research influence of processes in the dynamic gas-structure system on LP vibrations. This paper considers influence of rotor vibrations on LP gas dynamics and influence of the latter on the rotor structure within the FSI unidirectional dynamical coupled problem. Dependences of nonstationary parameters of gas-dynamic process in LP on rotor vibrations under various gas speeds and pressures, shaft rotation speeds and vibration amplitudes, and working medium features were studied. The programmed multi-processor ANSYS CFX was chosen as a numerical computation tool. The problem was solved using PNRPU high-capacity computer complex. Deformed shaft vibrations are replaced with an unyielding profile that moves in the fixed annulus "up-and-down" according to set harmonic rule. This solves a nonstationary gas-dynamic problem and determines time dependence of total gas-dynamic force value influencing the shaft. Pressure increase from 0.1 to 10 MPa causes growth of gas-dynamic force oscillation amplitude and frequency. The phase shift angle between gas-dynamic force oscillations and those of shaft displacement decreases from 3π/4 to π/2. Damping constant has maximum value under 1 MPa pressure in the gap. Increase of shaft oscillation frequency from 50 to 150 Hz under P=10 MPa causes growth of gas-dynamic force oscillation amplitude. Damping constant has maximum value at 50 Hz equaling 1.012. Increase of shaft vibration amplitude from 20 to 80 µm under P=10 MPa causes the rise of gas-dynamic force amplitude up to 20 times. Damping constant increases from 0.092 to 0.251. Calculations for various working substances (methane, perfect gas, air at 25 ˚С) prove the minimum gas-dynamic force persistent oscillating amplitude under P=0.1 MPa being observed in methane, and maximum in the air. Frequency remains almost unchanged and the phase shift in the air changes from 3π/4 to π/2. Calculations for various working substances (methane, perfect gas, air at 25 ˚С) prove the maximum gas-dynamic force oscillating amplitude under P=10 MPa being observed in methane, and minimum in the air. Air demonstrates surging. Increase of leakage speed from 0 to 20 m/s through LP under P=0.1 MPa causes the gas-dynamic force oscillating amplitude to decrease by 3 orders and oscillation frequency and the phase shift to increase 2 times and stabilize. Increase of leakage speed from 0 to 20 m/s in LP under P=1 MPa causes gas-dynamic force oscillating amplitude to decrease by almost 4 orders. The phase shift angle increases from π/72 to π/2. Oscillations become persistent. Flow rate proved to influence greatly on pressure oscillations amplitude and a phase shift angle. Work medium influence depends on operation conditions. At pressure growth, vibrations are mostly affected in methane (of working substances list considered), and at pressure decrease, in the air at 25 ˚С.

Impact of Tuberculosis Co-infection on Cytokine Expression in HIV-Infected Individuals

HIV and Tuberculosis (TB) infections each speed the other's progress. HIV-infection increases the risk of TB disease. At the same time, TB infection is associated with clinical progression of HIV-infection. HIV+TB co-infected patients are also at higher risk of acquiring new opportunistic infections. An important feature of disease progression and clinical outcome is the innate and acquired immune responses. HIV and TB, however, have a spectrum of dysfunctions of the immune response. As cytokines play a crucial role in the immunopathology of both infections, it is important to study immune interactions in patients with dual infection HIV+TB. Plasma levels of proinflammatory cytokines IL-2, IFN-γ and immunoregulating cytokines IL-4, IL-10 were evaluated in 75 patients with dual infection HIV+TB, 58 patients with HIV monoinfection and 50 patients with TB monoinfection who were previously naïve for HAART. The decreased levels of IL-2, IFN-γ, IL-4 and IL-10 were observed in patients with dual infection HIV+TB in comparison with patients who had only HIV or TB which means the profound suppression of Th1 and Th2 cytokine secretion. Thus, those cytokines could possibly serve as immunological markers of progression of HIV-infection in patients with TB.

Industry Openness, Human Capital and Wage Inequality: Evidence from Chinese Manufacturing Firms

This paper uses a primary data from 670 Chinese manufacturing firms, together with the newly introduced regressionbased inequality decomposition method, to study the effect of openness on wage inequality. We find that openness leads to a positive industry wage premium, but its contribution to firm-level wage inequality is relatively small, only 4.69%. The major contributor to wage inequality is human capital, which could explain 14.3% of wage inequality across sample firms.  

Design of Permanent Sensor Fault Tolerance Algorithms by Sliding Mode Observer for Smart Hybrid Powerpack

In the SHP, LVDT sensor is for detecting the length changes of the EHA output, and the thrust of the EHA is controlled by the pressure sensor. Sensor is possible to cause hardware fault by internal problem or external disturbance. The EHA of SHP is able to be uncontrollable due to control by feedback from uncertain information, on this paper; the sliding mode observer algorithm estimates the original sensor output information in permanent sensor fault. The proposed algorithm shows performance to recovery fault of disconnection and short circuit basically, also the algorithm detect various of sensor fault mode.

Status Report of the GERDA Phase II Startup

The GERmanium Detector Array (GERDA) experiment, located at the Laboratori Nazionali del Gran Sasso (LNGS) of INFN, searches for 0νββ of 76Ge. Germanium diodes enriched to ∼ 86 % in the double beta emitter 76Ge(enrGe) are exposed being both source and detectors of 0νββ decay. Neutrinoless double beta decay is considered a powerful probe to address still open issues in the neutrino sector of the (beyond) Standard Model of particle Physics. Since 2013, just after the completion of the first part of its experimental program (Phase I), the GERDA setup has been upgraded to perform its next step in the 0νββ searches (Phase II). Phase II aims to reach a sensitivity to the 0νββ decay half-life larger than 1026 yr in about 3 years of physics data taking. This exposing a detector mass of about 35 kg of enrGe and with a background index of about 10^−3 cts/(keV·kg·yr). One of the main new implementations is the liquid argon scintillation light read-out, to veto those events that only partially deposit their energy both in Ge and in the surrounding LAr. In this paper, the GERDA Phase II expected goals, the upgrade work and few selected features from the 2015 commissioning and 2016 calibration runs will be presented. The main Phase I achievements will be also reviewed.

The Integration Process of Non-EU Citizens in Luxembourg: From an Empirical Approach Toward a Theoretical Model

Integration of foreign communities has been a forefront issue in Luxembourg for some time now. The country’s continued progress depends largely on the successful integration of immigrants. The aim of our study was to analyze factors which intervene in the course of integration of Non-EU citizens through the discourse of Non-EU citizens residing in Luxembourg, who have signed the Welcome and Integration Contract (CAI). The two-year contract offers integration services to assist foreigners in getting settled in the country. Semi-structured focus group discussions with 50 volunteers were held in English, French, Spanish, Serbo-Croatian or Chinese. Participants were asked to talk about their integration experiences. Recorded then transcribed, the transcriptions were analyzed with the help of NVivo 10, a qualitative analysis software. A systematic and reiterative analysis of decomposing and reconstituting was realized through (1) the identification of predetermined categories (difficulties, challenges and integration needs) (2) initial coding – the grouping together of similar ideas (3) axial coding – the regrouping of items from the initial coding in new ways in order to create sub-categories and identify other core dimensions. Our results show that intervening factors include language acquisition, professional career and socio-cultural activities or events. Each of these factors constitutes different components whose weight shifts from person to person and from situation to situation. Connecting these three emergent factors are two elements essential to the success of the immigrant’s integration – the role of time and deliberate effort from the immigrants, the community, and the formal institutions charged with helping immigrants integrate. We propose a theoretical model where the factors described may be classified in terms of how they predispose, facilitate, and / or reinforce the process towards a successful integration. Measures currently in place propose one size fits all programs yet integrative measures which target the family unit and those customized to target groups based on their needs would work best.

A Hybrid P2P Storage Scheme Based on Erasure Coding and Replication

A peer-to-peer storage system has challenges like; peer availability, data protection, churn rate. To address these challenges different redundancy, replacement and repair schemes are used. This paper presents a hybrid scheme of redundancy using replication and erasure coding. We calculate and compare the storage, access, and maintenance costs of our proposed scheme with existing redundancy schemes. For realistic behaviour of peers a trace of live peer-to-peer system is used. The effect of different replication, and repair schemes are also shown. The proposed hybrid scheme performs better than existing double coding hybrid scheme in all metrics and have an improved maintenance cost than hierarchical codes.

Influence of Kinematic, Physical and Mechanical Structure Parameters on Aeroelastic GTU Shaft Vibrations in Magnetic Bearings

At present, vibrations of rotors of gas transmittal unit evade sustainable forecasting. This paper describes elastic oscillation modes in resilient supports and rotor impellers modeled during computational experiments with regard to interference in the system of gas-dynamic flow and compressor rotor. Verification of aeroelastic approach was done on model problem of interaction between supersonic jet in shock tube with deformed plate. ANSYS 15.0 engineering analysis system was used as a modeling tool of numerical simulation in this paper. Finite volume method for gas dynamics and finite elements method for assessment of the strain stress state (SSS) components were used as research methods. Rotation speed and material’s elasticity modulus varied during calculations, and SSS components and gas-dynamic parameters in the dynamic system of gas-dynamic flow and compressor rotor were evaluated. The analysis of time dependence demonstrated that gas-dynamic parameters near the rotor blades oscillate at 200 Hz, and SSS parameters at the upper blade edge oscillate four times higher, i.e. with blade frequency. It has been detected that vibration amplitudes correction in the test points at magnetic bearings by aeroelasticity may correspond up to 50%, and about -π/4 for phases.

Designing Creative Events with Deconstructivism Approach

Deconstruction is an approach that is entirely incompatible with the traditional prevalent architecture. Considering the fact that this approach attempts to put architecture in sharp contrast with its opposite events and transpires with attending to the neglected and missing aspects of architecture and deconstructing its stable structures. It also recklessly proceeds beyond the existing frameworks and intends to create a different and more efficient prospect for space. The aim of deconstruction architecture is to satisfy both the prospective and retrospective visions as well as takes into account all tastes of the present in order to transcend time. Likewise, it ventures to fragment the facts and symbols of the past and extract new concepts from within their heart, which coincide with today’s circumstances. Since this approach is an attempt to surpass the limits of the prevalent architecture, it can be employed to design places in which creative events occur and imagination and ambition flourish. Thought-provoking artistic events can grow and mature in such places and be represented in the best way possible to all people. The concept of event proposed in the plan grows out of the interaction between space and creation. In addition to triggering surprise and high impressions, it is also considered as a bold journey into the suspended realms of the traditional conflicts in architecture such as architecture-landscape, interior-exterior, center-margin, product-process, and stability-instability. In this project, at first, through interpretive-historical research method and examining the inputs and data collection, recognition and organizing takes place. After evaluating the obtained data using deductive reasoning, the data is eventually interpreted. Given the fact that the research topic is in its infancy and there is not a similar case in Iran with limited number of corresponding instances across the world, the selected topic helps to shed lights on the unrevealed and neglected parts in architecture. Similarly, criticizing, investigating and comparing specific and highly prized cases in other countries with the project under study can serve as an introduction into this architecture style.

Threshold Based Region Incrementing Secret Sharing Scheme for Color Images

In this era of online communication, which transacts data in 0s and 1s, confidentiality is a priced commodity. Ensuring safe transmission of encrypted data and their uncorrupted recovery is a matter of prime concern. Among the several techniques for secure sharing of images, this paper proposes a k out of n region incrementing image sharing scheme for color images. The highlight of this scheme is the use of simple Boolean and arithmetic operations for generating shares and the Lagrange interpolation polynomial for authenticating shares. Additionally, this scheme addresses problems faced by existing algorithms such as color reversal and pixel expansion. This paper regenerates the original secret image whereas the existing systems regenerates only the half toned secret image.

Seismic Safety Evaluation of Weir Structures Using the Finite and Infinite Element Method

This study presents the seismic safety evaluation of weir structure subjected to strong earthquake ground motions, as a flood defense structure in civil engineering structures. The seismic safety analysis procedure was illustrated through development of Finite Element (FE) and InFinite Element (IFE) method in ABAQUS platform. The IFE model was generated by CINPS4, 4-node linear one-way infinite model as a sold continuum infinite element in foundation areas of the weir structure and then nonlinear FE model using friction model for soil-structure interactions was applied in this study. In order to understand the complex behavior of weir structures, nonlinear time history analysis was carried out. Consequently, it was interesting to note that the compressive stress gave more vulnerability to the weir structure, in comparison to the tensile stress, during an earthquake. The stress concentration of the weir structure was shown at the connection area between the weir body and stilling basin area. The stress both tension and compression was reduced in IFE model rather than FE model of weir structures.

Web 2.0 in Higher Education: The Instructors’ Acceptance in Higher Educational Institutes in Kingdom of Bahrain

Since the beginning of distance education with the rapid evolution of technology, the social network plays a vital role in the educational process to enforce the interaction been the learners and teachers. There are many Web 2.0 technologies, services and tools designed for educational purposes. This research aims to investigate instructors’ acceptance towards web-based learning systems in higher educational institutes in Kingdom of Bahrain. Questionnaire is used to investigate the instructors’ usage of Web 2.0 and the factors affecting their acceptance. The results confirm that instructors had high accessibility to such technologies. However, patterns of use were complex. Whilst most expressed interest in using online technologies to support learning activities, learners seemed cautious about other values associated with web-based system, such as the shared construction of knowledge in a public format. The research concludes that there are main factors that affect instructors’ adoption which are security, performance expectation, perceived benefits, subjective norm, and perceived usefulness.