Biodegradability Evaluation of Polylactic Acid Composite with Natural Fiber (Sisal)

Due to increasing environmental pressure for biodegradable products, especially in polymeric materials, in order to meet the demands of the biological cycles of the circular economy, new materials have been developed as a sustainability strategy. This study proposes a composite material developed from the biodegradable polymer PLA Ecovio® (polylactic acid - PLA) with natural sisal fibers, where the soybean ester was used as a plasticizer, which can aid in adhesion between the materials and fibers, making the most attractive final composite from an environmental point of view. The composites were obtained by extrusion. The materials tests were produced and submitted to biodegradation tests. Through the biodegradation tests, it can be seen that the biodegradable polymer composition with 5% sisal fiber presented about 12.4% more biodegradability compared to the polymer without fiber addition. It has also been found that the plasticizer was not a compatible with fibers and the polymer. Finally, fibers help to anticipate the decomposition process of the material when subjected to conditions of a landfill. Therefore, its intrinsic properties are not affected during its use, only the biodegradation process begins after its exposure to landfill conditions.

Working with Children and Young People as a much Neglected Area of Education within the Social Studies Curriculum in Poland

Social work education in Poland focuses mostly on developing competencies that address the needs of individuals and families affected by a variety of life's problems. As a result of the ageing of the Polish population, much attention is equally devoted to adults, including the elderly. However, social work with children and young people is the area of education which should be given more consideration. Social work students are mostly trained to cater to the needs of families and the competencies aimed to respond to the needs of children and young people do not receive enough attention and are only offered as elective classes. This paper strives to review the social work programmes offered by the selected higher education institutions in Poland in terms of social work training aimed at helping children and young people to address their life problems. The analysis conducted in this study indicates that university education for social work focuses on training professionals who will provide assistance only to adults. Due to changes in the social and political situation, including, in particular, changes in social policy implemented for the needy, it is necessary to extend this area of education to include the specificity of the support for children and young people; especially, in the light of the appearance of new support professions within the area of social work. For example, family assistants, whose task is to support parents in performing their roles as guardians and educators, also assist children. Therefore, it becomes necessary to equip social work professionals with competencies which include issues related to the quality of life of underage people living in families. Social work curricula should be extended to include the issues of child and young person development and the patterns governing this phase of life.

Assessing the Impact of High Fidelity Human Patient Simulation on Teamwork among Nursing, Medicine and Pharmacy Undergraduate Students

High fidelity human patient simulation has been used for many years by health sciences education programs to foster critical thinking, engage learners, improve confidence, improve communication, and enhance psychomotor skills. Unfortunately, there is a paucity of research on the use of high fidelity human patient simulation to foster teamwork among nursing, medicine and pharmacy undergraduate students. This study compared the impact of high fidelity and low fidelity simulation education on teamwork among nursing, medicine and pharmacy students. For the purpose of this study, two innovative teaching scenarios were developed based on the care of an adult patient experiencing acute anaphylaxis: one high fidelity using a human patient simulator and one low fidelity using case based discussions. A within subjects, pretest-posttest, repeated measures design was used with two-treatment levels and random assignment of individual subjects to teams of two or more professions. A convenience sample of twenty-four (n=24) undergraduate students participated, including: nursing (n=11), medicine (n=9), and pharmacy (n=4). The Interprofessional Teamwork Questionnaire was used to assess for changes in students’ perception of their functionality within the team, importance of interprofessional collaboration, comprehension of roles, and confidence in communication and collaboration. Student satisfaction was also assessed. Students reported significant improvements in their understanding of the importance of interprofessional teamwork and of the roles of nursing and medicine on the team after participation in both the high fidelity and the low fidelity simulation. However, only participants in the high fidelity simulation reported a significant improvement in their ability to function effectively as a member of the team. All students reported that both simulations were a meaningful learning experience and all students would recommend both experiences to other students. These findings suggest there is merit in both high fidelity and low fidelity simulation as a teaching and learning approach to foster teamwork among undergraduate nursing, medicine and pharmacy students. However, participation in high fidelity simulation may provide a more realistic opportunity to practice and function as an effective member of the interprofessional health care team.

Functionality and Application of Rice Bran Protein Hydrolysates in Oil in Water Emulsions: Their Stabilities to Environmental Stresses

Rice bran protein hydrolysates (RBPH) were prepared from defatted rice bran of two different Thai rice cultivars (Plai-Ngahm-Prachinburi; PNP and Khao Dok Mali 105; KDM105) using an enzymatic method. This research aimed to optimize enzyme-assisted protein extraction. In addition, the functional properties of RBPH and their stabilities to environmental stresses including pH (3 to 8), ionic strength (0 mM to 500 mM) and the thermal treatment (30 °C to 90 °C) were investigated. Results showed that enzymatic process for protein extraction of defatted rice bran was as follows: enzyme concentration 0.075 g/ 5 g of protein, extraction temperature 50 °C and extraction time 4 h. The obtained protein hydrolysate powders had a degree of hydrolysis (%) of 21.05% in PNP and 19.92% in KDM105. The solubility of protein hydrolysates at pH 4-6 was ranged from 27.28-38.57% and 27.60-43.00% in PNP and KDM105, respectively. In general, antioxidant activities indicated by total phenolic content, FRAP, ferrous ion-chelating (FIC), and 2,2’-azino-bis-3-ethylbenzthiazoline-6-sulphonic acid (ABTS) of KDM105 had higher than PNP. In terms of functional properties, the emulsifying activity index (EAI) was was 8.78 m²/g protein in KDM105, whereas PNP was 5.05 m²/g protein. The foaming capacity at 5 minutes (%) was 47.33 and 52.98 in PNP and KDM105, respectively. Glutamine, Alanine, Valine, and Leucine are the major amino acid in protein hydrolysates where the total amino acid of KDM105 gave higher than PNP. Furthermore, we investigated environmental stresses on the stability of 5% oil in water emulsion (5% oil, 10 mM citrate buffer) stabilized by RBPH (3.5%). The droplet diameter of emulsion stabilized by KDM105 was smaller (d < 250 nm) than produced by PNP. For environmental stresses, RBPH stabilized emulsions were stable at pH around 3 and 5-6, at high salt (< 400 mM, pH 7) and at temperatures range between 30-50°C.

Analysis of the Operational Performance of Three Unconventional Arterial Intersection Designs: Median U-Turn, Superstreet and Single Quadrant

This paper is aimed to evaluate and compare the operational performance of three Unconventional Arterial Intersection Designs (UAIDs) including Median U-Turn, Superstreet, and Single Quadrant Intersection using real traffic data. For this purpose, the heavily congested signalized intersection of Wadi Saqra in Amman was selected. The effect of implementing each of the proposed UAIDs was not only evaluated on the isolated Wadi Saqra signalized intersection, but also on the arterial road including both surrounding intersections. The operational performance of the isolated intersection was based on the level of service (LOS) expressed in terms of control delay and volume to capacity ratio. On the other hand, the measures used to evaluate the operational performance on the arterial road included traffic progression, stopped delay per vehicle, number of stops and the travel speed. The analysis was performed using SYNCHRO 8 microscopic software. The simulation results showed that all three selected UAIDs outperformed the conventional intersection design in terms of control delay but only the Single Quadrant Intersection design improved the main intersection LOS from F to B. Also, the results indicated that the Single Quadrant Intersection design resulted in an increase in average travel speed by 52%, and a decrease in the average stopped delay by 34% on the selected corridor when compared to the corridor with conventional intersection design. On basis of these results, it can be concluded that the Median U-Turn and the Superstreet do not perform the best under heavy traffic volumes.

Safety Assessment of Traditional Ready-to-Eat Meat Products Vended at Retail Outlets in Kebbi and Sokoto States, Nigeria

Food safety is a significant and growing public health problem in the world and Nigeria as a developing country, since food-borne diseases are important contributors to the huge burden of sickness and death of humans. In Nigeria, traditional ready-to-eat meat products (RTE-MPs) like balangu, tsire, guru and dried meat products like kilishi, dambun nama, banda, were reported to be highly appreciated because of their eating qualities. The consumption of these products was considered as safe due to the treatments that are usually involved during their production process. However, during processing and handling, the products could be contaminated by pathogens that could cause food poisoning. Therefore, a hazard identification for pathogenic bacteria on some traditional RTE-MPs was conducted in Kebbi and Sokoto States, Nigeria. A total of 116 RTE-MPs (balangu-38, kilishi-39 and tsire-39) samples were obtained from retail outlets and analyzed using standard cultural microbiological procedures in general and selective enrichment media to isolate the target pathogens. A six-fold serial dilution was prepared and using the pour plating method, colonies were counted. Serial dilutions were selected based on the prepared pre-labeled Petri dishes for each sample. A volume of 10-12 ml of molten Nutrient agar cooled to 42-45°C was poured into each Petri dish and 1 ml each from dilutions of 102, 104 and 106 for every sample was respectively poured on a pre-labeled Petri plate after which colonies were counted. The isolated pathogens were identified and confirmed after series of biochemical tests. Frequencies and percentages were used to describe the presence of pathogens. The General Linear Model was used to analyze data on pathogen presence according to RTE-MPs and means were separated using the Tukey test at 0.05 confidence level. Of the 116 RTE-MPs samples collected, 35 (30.17%) samples were found to be contaminated with some tested pathogens. Prevalence results showed that Escherichia coli, salmonella and Staphylococcus aureus were present in the samples. Mean total bacterial count was 23.82×106 cfu/g. The frequency of individual pathogens isolated was; Staphylococcus aureus 18 (15.51%), Escherichia coli 12 (10.34%) and Salmonella 5 (4.31%). Also, among the RTE-MPs tested, the total bacterial counts were found to differ significantly (P < 0.05), with 1.81, 2.41 and 2.9×104 cfu/g for tsire, kilishi, and balangu, respectively. The study concluded that the presence of pathogenic bacteria in balangu could pose grave health risks to consumers, and hence, recommended good manufacturing practices in the production of balangu to improve the products’ safety.

The Dynamics of Algeria’s Natural Gas Exports to Europe: Evidence from ARDL Bounds Testing Approach with Breakpoints

The purpose of the study is to examine the dynamics of Algeria’s natural gas exports through the Autoregressive Distributed Lag (ARDL) bounds testing approach with break points. The analysis was carried out for the period from 1967 to 2015. Based on imperfect substitution specification, the ARDL approach reveals a long-run equilibrium relationship between Algeria’s Natural gas exports and their determinant factors (Algeria’s gas reserves, Domestic gas consumption, Europe’s GDP per capita, relative prices, the European gas production and the market share of competitors). All the long-run elasticities estimated are statistically significant with a large impact of domestic factors, which constitute the supply constraints. In short term, the elasticities are statistically significant, and almost comparable to those of the long term. Furthermore, the speed of adjustment towards long-run equilibrium is less than one year because of the little flexibility of the long term export contracts. Two break points have been estimated when we employ the domestic gas consumption as a break variable; 1984 and 2010, which reflect the arbitration policy between the domestic gas market and gas exports.

Investigation on a Wave-Powered Electrical Generator Consisted of a Geared Motor-Generator Housed by a Double-Cone Rolling on Concentric Circular Rails

An electrical generator able to harness energy from the water waves and designed as a double-cone geared motor-generator (DCGMG), is proposed and theoretically investigated. Similar to a differential gear mechanism, used in the transmission system of the auto vehicle wheels, an angular speed differential is created between the cones rolling on two concentric circular rails. Water wave acting on the floating DCGMG produces and a gear-box amplifies the speed differential to gain sufficient torque for power generation. A model that allows computation of the speed differential, torque, and power of the DCGMG is suggested. Influence of various parameters, regarding the construction of the DCGMG, as well as the contact between the double-cone and rails, on the electro-mechanical output, is emphasized. Results obtained indicate that the generated electrical power can be increased by augmenting the mass of the double-cone, the span of the rails, the apex angle of the cones, the friction between cones and rails, the amplification factor of the gear-box, and the efficiency of the motor-generator. Such findings are useful to formulate a design methodology for the proposed wave-powered generator.

Damping and Stability Evaluation for the Dynamical Hunting Motion of the Bullet Train Wheel Axle Equipped with Cylindrical Wheel Treads

Classical matrix calculus and Routh-Hurwitz stability conditions, applied to the snake-like motion of the conical wheel axle, lead to the conclusion that the hunting mode is inherently unstable, and its natural frequency is a complex number. In order to analytically solve such a complicated vibration model, either the inertia terms were neglected, in the model designated as geometrical, or restrictions on the creep coefficients and yawing diameter were imposed, in the so-called dynamical model. Here, an alternative solution is proposed to solve the hunting mode, based on the observation that the bullet train wheel axle is equipped with cylindrical wheels. One argues that for such wheel treads, the geometrical hunting is irrelevant, since its natural frequency becomes nil, but the dynamical hunting is significant since its natural frequency reduces to a real number. Moreover, one illustrates that the geometrical simplification of the wheel causes the stabilization of the hunting mode, since the characteristic quartic equation, derived for conical wheels, reduces to a quadratic equation of positive coefficients, for cylindrical wheels. Quite simple analytical expressions for the damping ratio and natural frequency are obtained, without applying restrictions into the model of contact. Graphs of the time-depending hunting lateral perturbation, including the maximal and inflexion points, are presented both for the critically-damped and the over-damped wheel axles.

Finite Element Analysis of Raft Foundation on Various Soil Types under Earthquake Loading

The design of shallow foundations to withstand different dynamic loads has given considerable attention in recent years. Dynamic loads may be due to the earthquakes, pile driving, blasting, water waves, and machine vibrations. But, predicting the behavior of shallow foundations during earthquakes remains a difficult task for geotechnical engineers. A database for dynamic and static parameters for different soils in seismic active zones in Iraq is prepared which has been collected from geophysical and geotechnical investigation works. Then, analysis of a typical 3-D soil-raft foundation system under earthquake loading is carried out using the database. And a parametric study has been carried out taking into consideration the influence of some parameters on the dynamic behavior of the raft foundation, such as raft stiffness, damping ratio as well as the influence of the earthquake acceleration-time records. The results of the parametric study show that the settlement caused by the earthquake can be decreased by about 72% with increasing the thickness from 0.5 m to 1.5 m. But, it has been noticed that reduction in the maximum bending moment by about 82% was predicted by decreasing the raft thickness from 1.5 m to 0.5 m in all sites model. Also, it has been observed that the maximum lateral displacement, the maximum vertical settlement and the maximum bending moment for damping ratio 0% is about 14%, 20%, and 18% higher than that for damping ratio 7.5%, respectively for all sites model.

Development and Validation of an Instrument Measuring the Coping Strategies in Situations of Stress

Stress causes deleterious effects to the physical, psychological and organizational levels, which highlight the need to use effective coping strategies to deal with it. Several coping models exist, but they don’t integrate the different strategies in a coherent way nor do they take into account the new research on the emotional coping and acceptance of the stressful situation. To fill these gaps, an integrative model incorporating the main coping strategies was developed. This model arises from the review of the scientific literature on coping and from a qualitative study carried out among workers with low or high levels of stress, as well as from an analysis of clinical cases. The model allows one to understand under what circumstances the strategies are effective or ineffective and to learn how one might use them more wisely. It includes Specific Strategies in controllable situations (the Modification of the Situation and the Resignation-Disempowerment), Specific Strategies in non-controllable situations (Acceptance and Stubborn Relentlessness) as well as so-called General Strategies (Wellbeing and Avoidance). This study is intended to undertake and present the process of development and validation of an instrument to measure coping strategies based on this model. An initial pool of items has been generated from the conceptual definitions and three expert judges have validated the content. Of these, 18 items have been selected for a short form questionnaire. A sample of 300 students and employees from a Quebec university was used for the validation of the questionnaire. Concerning the reliability of the instrument, the indices observed following the inter-rater agreement (Krippendorff’s alpha) and the calculation of the coefficients for internal consistency (Cronbach's alpha) are satisfactory. To evaluate the construct validity, a confirmatory factor analysis using MPlus supports the existence of a model with six factors. The results of this analysis suggest also that this configuration is superior to other alternative models. The correlations show that the factors are only loosely related to each other. Overall, the analyses carried out suggest that the instrument has good psychometric qualities and demonstrates the relevance of further work to establish predictive validity and reconfirm its structure. This instrument will help researchers and clinicians better understand and assess coping strategies to cope with stress and thus prevent mental health issues.

Application of a SubIval Numerical Solver for Fractional Circuits

The paper discusses the subinterval-based numerical method for fractional derivative computations. It is now referred to by its acronym – SubIval. The basis of the method is briefly recalled. The ability of the method to be applied in time stepping solvers is discussed. The possibility of implementing a time step size adaptive solver is also mentioned. The solver is tested on a transient circuit example. In order to display the accuracy of the solver – the results have been compared with those obtained by means of a semi-analytical method called gcdAlpha. The time step size adaptive solver applying SubIval has been proven to be very accurate as the results are very close to the referential solution. The solver is currently able to solve FDE (fractional differential equations) with various derivative orders for each equation and any type of source time functions.

Modeling the Saltatory Conduction in Myelinated Axons by Order Reduction

The saltatory conduction is the way the action potential is transmitted along a myelinated axon. The potential diffuses along the myelinated compartments and it is regenerated in the Ranvier nodes due to the ion channels allowing the flow across the membrane. For an efficient simulation of populations of neurons, it is important to use reduced order models both for myelinated compartments and for Ranvier nodes and to have control over their accuracy and inner parameters. The paper presents a reduced order model of this neural system which allows an efficient simulation method for the saltatory conduction in myelinated axons. This model is obtained by concatenating reduced order linear models of 1D myelinated compartments and nonlinear 0D models of Ranvier nodes. The models for the myelinated compartments are selected from a series of spatially distributed models developed and hierarchized according to their modeling errors. The extracted model described by a nonlinear PDE of hyperbolic type is able to reproduce the saltatory conduction with acceptable accuracy and takes into account the finite propagation speed of potential. Finally, this model is again reduced in order to make it suitable for the inclusion in large-scale neural circuits.

Research Action Fields at the Nexus of Digital Transformation and Supply Chain Management: Findings from Practitioner Focus Group Workshops

Logistics and Supply Chain Management are of crucial importance for organisational success. In the era of Digitalization, several implications and improvement potentials for these domains arise, which at the same time could lead to decreased competitiveness and could endanger long-term company success if ignored or neglected. However, empirical research on the issue of Digitalization and benefits purported to it by practitioners is scarce and mainly focused on single technologies or separate, isolated Supply Chain blocks as e.g. distribution logistics or procurement only. The current paper applies a holistic focus group approach to elaborate practitioner use cases at the nexus of the concepts of Supply Chain Management (SCM) and Digitalization. In the course of three focus group workshops with over 45 participants from more than 20 organisations, a comprehensive set of benefit entitlements and areas for improvement in terms of applying digitalization to SCM is developed. The main results of the paper indicate the relevance of Digitalization being realized in practice. In the form of seventeen concrete research action fields, the benefit entitlements are aggregated and transformed into potential starting points for future research projects in this area. The main contribution of this paper is an empirically grounded basis for future research projects and an overview of actual research action fields from practitioners’ point of view.

The Integration of Cleaner Production Innovation and Creativity for Supply Chain Sustainability of Bogor Batik SMEs

Competitiveness and sustainability issues not only put pressure on big companies, but also small and medium enterprises (SMEs). SMEs Batik Bogor is one of the local culture-based creative industries in Bogor city which is also dealing with the issue of sustainability. The purpose of this research is to develop framework of sustainability at SMEs Batik Indonesia case of SMEs Batik Bogor by integrating innovation of cleaner production in its supply chain. The approach used is desk study, field survey, in-depth interviews, and benchmarking best practices of SMEs sustainability. In-depth interviews involve stakeholders to identify the needs and standards of sustainability of SMEs Batik. Data analysis was done by benchmarking method, Multi Dimension Scaling (MDS) method, and Strength, Weakness, Opportunity, Threat (SWOT) analysis. The results recommend the framework of sustainability for SMEs Batik in Indonesia. The sustainability status of SMEs Batik Bogor is classified as Moderate Sustainable. Factors that support the sustainability of SMEs Batik Bogor such is a strong commitment of top management in adopting cleaner production innovation and creativity approach. Successful cleaner production innovations are implemented primarily in the substitution of dye materials from toxic to non-toxic, reducing the intensity of non-renewable energy use, as well as the reuse and recycle of solid waste. “Mosaic Batik” is one of the innovations of solid waste utilization of batik waste produced by company R&D center that gives benefit to three pillars of sustainability, that is financial benefit, environmental benefit, and social benefit. The sustainability of SMEs Batik Bogor cannot be separated from the support of Bogor City Government which proactively facilitates the promotion of sustainable innovation produced by SMEs Batik Bogor.

A Dynamic Mechanical Thermal T-Peel Test Approach to Characterize Interfacial Behavior of Polymeric Textile Composites

Basic understanding of interfacial mechanisms is of importance for the development of polymer composites. For this purpose, we need techniques to analyze the quality of interphases, their chemical and physical interactions and their strength and fracture resistance. In order to investigate the interfacial phenomena in detail, advanced characterization techniques are favorable. Dynamic mechanical thermal analysis (DMTA) using a rheological system is a sensitive tool. T-peel tests were performed with this system, to investigate the temperature-dependent peel behavior of woven textile composites. A model system was made of polyamide (PA) woven fabric laminated with films of polypropylene (PP) or PP modified by grafting with maleic anhydride (PP-g-MAH). Firstly, control measurements were performed with solely PP matrixes. Polymer melt investigations, as well as the extensional stress, extensional viscosity and extensional relaxation modulus at -10°C, 100 °C and 170 °C, demonstrate similar viscoelastic behavior for films made of PP-g-MAH and its non-modified PP-control. Frequency sweeps have shown that PP-g-MAH has a zero phase viscosity of around 1600 Pa·s and PP-control has a similar zero phase viscosity of 1345 Pa·s. Also, the gelation points are similar at 2.42*104 Pa (118 rad/s) and 2.81*104 Pa (161 rad/s) for PP-control and PP-g-MAH, respectively. Secondly, the textile composite was analyzed. The extensional stress of PA66 fabric laminated with either PP-control or PP-g-MAH at -10 °C, 25 °C and 170 °C for strain rates of 0.001 – 1 s-1 was investigated. The laminates containing the modified PP need more stress for T-peeling. However, the strengthening effect due to the modification decreases by increasing temperature and at 170 °C, just above the melting temperature of the matrix, the difference disappears. Independent of the matrix used in the textile composite, there is a decrease of extensional stress by increasing temperature. It appears that the more viscous is the matrix, the weaker the laminar adhesion. Possibly, the measurement is influenced by the fact that the laminate becomes stiffer at lower temperatures. Adhesive lap-shear testing at room temperature supports the findings obtained with the T-peel test. Additional analysis of the textile composite at the microscopic level ensures that the fibers are well embedded in the matrix. Atomic force microscopy (AFM) imaging of a cross section of the composite shows no gaps between the fibers and matrix. Measurements of the water contact angle show that the MAH grafted PP is more polar than the virgin-PP, and that suggests a more favorable chemical interaction of PP-g-MAH with PA, compared to the non-modified PP. In fact, this study indicates that T-peel testing by DMTA is a technique to achieve more insights into polymeric textile composites.

Combustion Analysis of Suspended Sodium Droplet

Combustion analysis of suspended sodium droplet is performed by solving numerically the Navier-Stokes equations and the energy conservation equations. The combustion model consists of the pre-ignition and post-ignition models. The reaction rate for the pre-ignition model is based on the chemical kinetics, while that for the post-ignition model is based on the mass transfer rate of oxygen. The calculated droplet temperature is shown to be in good agreement with the existing experimental data. The temperature field in and around the droplet is obtained as well as the droplet shape variation, and the present numerical model is confirmed to be effective for the combustion analysis.

Surface Modification of Titanium Alloy with Laser Treatment

The effect of laser surface treatment parameters on the residual strength of titanium alloy has been investigated. The influence of the laser surface treatment on the bonding strength between the titanium and poly-ether-ketone-ketone (PEKK) surfaces was also evaluated and compared to those offered by titanium foils without surface treatment to optimize the laser parameters. Material characterization using an optical microscope was carried out to study the microstructure and to measure the mean roughness value of the titanium surface. The results showed that the surface roughness shows a significant dependency on the laser power parameters in which surface roughness increases with the laser power increment. Moreover, the results of the tensile tests have shown that there is no significant dropping in tensile strength for the treated samples comparing to the virgin ones. In order to optimize the laser parameter as well as the corresponding surface roughness, single-lap shear tests were conducted on pairs of the laser treated titanium stripes. The results showed that the bonding shear strength between titanium alloy and PEKK film increased with the surface roughness increment to a specific limit. After this point, it is interesting to note that there was no significant effect for the laser parameter on the bonding strength. This evidence suggests that it is not necessary to use very high power of laser to treat titanium surface to achieve a good bonding strength between titanium alloy and the PEKK film.

Accounting for Rice Productivity Heterogeneity in Ghana: The Two-Step Stochastic Metafrontier Approach

Rice yields among agro-ecological zones are heterogeneous. Farmers, researchers and policy makers are making frantic efforts to bridge rice yield gaps between agro-ecological zones through the promotion of improved agricultural technologies (IATs). Farmers are also modifying these IATs and blending them with indigenous farming practices (IFPs) to form farmer innovation systems (FISs). Also, different metafrontier models have been used in estimating productivity performances and their drivers. This study used the two-step stochastic metafrontier model to estimate the productivity performances of rice farmers and their determining factors in GSZ, FSTZ and CSZ. The study used both primary and secondary data. Farmers in CSZ are the most technically efficient. Technical inefficiencies of farmers are negatively influenced by age, sex, household size, education years, extension visits, contract farming, access to improved seeds, access to irrigation, high rainfall amount, less lodging of rice, and well-coordinated and synergized adoption of technologies. Albeit farmers in CSZ are doing well in terms of rice yield, they still have the highest potential of increasing rice yield since they had the lowest TGR. It is recommended that government through the ministry of food and agriculture, development partners and individual private companies promote the adoption of IATs as well as educate farmers on how to coordinate and synergize the adoption of the whole package. Contract farming concept and agricultural extension intensification should be vigorously pursued to the latter.

Impact of Brand Origin on Brand Loyalty: A Case of Personal Care Products in Pakistan

As the world is progressing, the needs and demands of the consumer market are also changing. Nowadays the trends of consumer purchase decisions are dependent upon multiple factors. This study aims to identify the influential impact of country of origin over the perception and devotion towards daily personal care products specifically in reference to the knowledge and awareness regarding that particular brand in Pakistan. To corroborate this study, a 30-item brand origin questionnaire has been used with 300 purchase decision makers belonging to different age groups. To illustrate this study, a model has been developed based on brand origin, brand awareness and brand loyalty. Correlation and regression analysis have been used to find out the results which conclude the findings on the perspective of Pakistan’s consumer market as that brand origin has a direct relationship with brand loyalty provided that the consumer has a positive brand awareness. Support for the fact that brand origin impacts brand loyalty through brand awareness has been presented in this study.