Vibration Control of a Cantilever Beam Using a Tunable Vibration Absorber Embedded with ER Fluids

This paper investigates experimental studies on
vibration suppression for a cantilever beam using an
Electro-Rheological (ER) sandwich shock absorber. ER fluid (ERF) is a
class of smart materials that can undergo significant reversible changes
immediately in its rheological and mechanical properties under the
influence of an applied electric field. Firstly, an ER sandwich beam is
fabricated by inserting a starch-based ERF into a hollow composite
beam. At the same time, experimental investigations are focused on the
frequency response of the ERF sandwich beam. Second, the ERF
sandwich beam is attached to a cantilever beam to become as a shock
absorber. Finally, a fuzzy semi-active vibration control is designed to
suppress the vibration of the cantilever beam via the ERF sandwich
shock absorber. To check the consistency of the proposed fuzzy
controller, the real-time implementation validated the performance of
the controller.





References:
<p>[1] W. M. Winslow, &ldquo;Induced Fibration of Suspensions,&rdquo; Journal of Applied
Physics, vol. 20, 1949, pp.1137-1140.
[2] R. S. Stanway, J. L. Sproston, A. K. El Wahed, &ldquo;Applications of
electro-rheological fluids in vibration control: A survey,&rdquo; Smart Mater.
Struct., vol. 5, 1996, pp.464-482.
[3] M. V. Gandhi, B. S. Thompson, &ldquo;A new generation of innovative
ultra-advanced intelligent composite materials featuring
electro-rheological fluids: an experimental investigation,&rdquo; J. Compos.
Mater. , vol. 23, 1989, pp.1232-1254.
[4] S. B. Choi, Y. K. Park, M. S. Suh, &ldquo;Elastodynamic characteristics of
hollow cantilever beams containing an electro-rheological fluid:
Experimental results,&rdquo; AIAA J., vol. 32, 1992, pp.438-440.
[5] M. Yalcintas, J. Pl Coulter, D. L. Don, &ldquo;Structural modeling and optimal
control of electro-rheological material based adaptive beams,&rdquo; Smart
Mater. Struct., vol. 4, 1995, pp.207-214..
[6] S. B. Choi, Y. K. Park, C. C. Cheong, &ldquo;Active vibration control of
intelligent composite laminate structures incorporating an
electro-rheological fluid,&rdquo; J. Intell. Mater. Syst. Structures, vol. 7, 1996,
pp.411-419.
[7] C. D. Rahn, S. Joshi, &ldquo;Modeling and control of an electro-rheological
sandwich beam,&rdquo; J. Vib. Acoust., vol. 120, 1998, pp.221-227.
[8] K. X. Wei, G. Meng, W. M. Zhang, &ldquo;Vibration characteristics of a
rotating beam filled with electrorheological fluid,&rdquo; J. Intell. Mater. Syst.
Structures, vol. 18, 2007, pp.1165-1173.
[9] H. Frahm,&ldquo;Device for damping vibrations of bodies,&rdquo;USpatent no.
989958, 1911, http://patft.uspto.gov/netahtml/PTO/srchnum.htm.
[10] M. J. Brennan, &ldquo;Some recent developments in adaptivetuned vibration
absorbers/neutralizers,&rdquo; Shock and Vibration, vol. 13, 2006, pp. 531&ndash;543.
[11] L. Kela, P. Vahaoja, &ldquo;Recent studies of adaptivetuned vibration
absorbers/neutralizers,&rdquo;AppliedMechanicsReviews, vol. 62, 2009, pp.
060801-1&ndash;060801-9.
[12] A. K. Ghorbani-Tanha, M. Rahimian, A. Noorzad, &ldquo;A novel semiactive
variable stiffness device and its applicationin a new semiactive tuned
vibration absorber,&rdquo; J. Engineering Mechanics,vol. 137, 2011, pp.
390&ndash;399.
[13] C. Y. Lee, C. C. Chen, T. H. Yang, C. J. Lin, &ldquo;Structural vibration control
using a tunable hybrid shape memory material vibration absorber,&rdquo; J.
Intell. Mater. Syst. Structures, vol. 23, 2012, pp.1725-1734.</p>