Vertically Grown p–Type ZnO Nanorod on Ag Thin Film

A Silver (Ag) thin film is introduced as a template and
doping source for vertically aligned p–type ZnO nanorods. ZnO
nanorods were grown using an ammonium hydroxide based
hydrothermal process. During the hydrothermal process, the Ag thin
film was dissolved to generate Ag ions in the solution. The Ag ions can
contribute to doping in the wurzite structure of ZnO and the (111)
grain of Ag thin film can be the epitaxial temporal template for the
(0001) plane of ZnO. Hence, Ag–doped p–type ZnO nanorods were
successfully grown on the substrate, which can be an electrode or
semiconductor for the device application. To demonstrate the
potentials of this idea, p–n diode was fabricated and its electrical
characteristics were demonstrated.





References:
[1] C. Bekeny, “Origin of the near-band-edge photoluminescence emission
in aqueous chemically grown ZnO nanorods” J. Appl. Phys. 100,
104317–104320, 2006.
[2] H. Zhu, “Ultralow-threshold laser realized in Zinc Oxide,” Adv. Mater.
16, 1613–1617, 2009.
[3] T. Yamada, “Low resistivity Ga-doped ZnO thin films of less than 100
nm thickness prepared by ion plating with direct current arc discharge”
Appl. Phys. Lett. 91, 051915, 2007.
[4] C. Wang, “Fabrication and characteristics of the low-resistive p-type
ZnO thin films by DC reactive magnetron sputtering” Mater. Lett. 60,
912–914, 2006.
[5] S. Baruah, “Hydrothermal growth of ZnO nanostructures,” Sci. Technol.
Adv. Mater., 10, 013001, 2009.
[6] X. Fang, “Phosphorus-Doped p-Type ZnO Nanorods and ZnO Nanorod
p-n Homojunction LED Fabricated by Hydrothermal Method”, J. Phys.
Chem. C., 113, 21208–21212, 2009.
[7] H. Chang, “A highly sensitive ultraviolet sensor based on a facile in situ
solution-grown ZnO nanorod/graphene heterostructure”, Nanoscale, 3,
258–264, 2011.
[8] J.X. Wang, “Hydrothermally grown oriented ZnO nanorod arrays for gas
sensing applications”, Nanotechnology, 17, 4995–4998, 2006.
[9] Z.L. Wang, “Piezoelectric Nanogenerators Based on Zinc Oxide
Nanowire Arrays”, Science, 312, 242–246, 2006.
[10] B.-K. Shin, “Bottom-up grown ZnO nanorods for an antireflective
moth-eye structure onCuInGaSe2 solar cells”, Sol. Energy Mater. Sol.
Cells, 95, 2650–2654, 2011. [11] Y. Wei, “Enhanced photoelectrochemical water-splitting effect with a
bent ZnO nanorod photoanode decorated with Ag nanoparticles”,
Nanotechnology, 23, 235401, 2012.
[12] S. Xu, “Optimizing and Improving the Growth Quality of ZnO Nanowire
Arrays Guided by Statistical Design of Experiments”, ACS Nano, 3,
1803–1812, 2009.
[13] T.I. Lee, “Playing with Dimensions: Rational Design for Heteroepitaxial
p−n Junctions”, Nano Lett., 12, 68−76, 2012.
[14] J. Fabrega, “Silver Nanoparticle Impact on Bacterial Growth: Effect of
pH, Concentration, and Organic Matter”, Environ. Sci. Technol., 43,
7285–7290, 2009.