Temperature Variation Effects on I-V Characteristics of Cu-Phthalocyanine based OFET

In this study we present the effect of elevated temperatures from 300K to 400K on the electrical properties of copper Phthalocyanine (CuPc) based organic field effect transistors (OFET). Thin films of organic semiconductor CuPc (40nm) and semitransparent Al (20nm) were deposited in sequence, by vacuum evaporation on a glass substrate with previously deposited Ag source and drain electrodes with a gap of 40 μm. Under resistive mode of operation, where gate was suspended it was observed that drain current of this organic field effect transistor (OFET) show an increase with temperature. While in grounded gate condition metal (aluminum) – semiconductor (Copper Phthalocyanine) Schottky junction dominated the output characteristics and device showed switching effect from low to high conduction states like Zener diode at higher bias voltages. This threshold voltage for switching effect has been found to be inversely proportional to temperature and shows an abrupt decrease after knee temperature of 360K. Change in dynamic resistance (Rd = dV/dI) with respect to temperature was observed to be -1%/K.




References:
[1] C.D. Dimitrakopoulos, D.J. Mascaro, "Organic thin-film transistors: A
review of recent advances", IBM J. Res. & Dev, vol. 45, pp. 11, 2001.
[2] H.L. Gomes, P. Stallinga, F. Dinelli, M. Murgia, F. Biscarini, D.M. de
Leeuw, T. Muck, J. Geurts, L.W. Molenkamp, V. Wagner "Bias-induced
threshold voltages shifts in thin-film organic transistors", Applied
Physics Letter, vol. 84, pg. 3184, 2004.
[3] P. Stallinga, H.L. Gomes, F. Biscarini, M. Murgia, D.M. de Leeuw
"Electronic transport in field-effect transistors of sexithiophene",
Journal of Applied Physics, vol. 96, pg. 5277, 2004.
[4] H.L. Gomes, P. Stallinga, F. Dinelli, M. Murgia, F. Biscarini, D.M. de
Leeuw, M. Muccini, J. Moulien, Polym. Adv. Technol, vol. 16, pg. 227,
2005.
[5] S.F. Nelson, Y.Y. Lin, D.J. Gundlach, T. N. Jackson, "Temperatureindependent
transport in high mobility pentacene transistors", Applied
Physics Letters, vol. 72, pg. 1854, 1998.
[6] Y.Y. Noh, D.Y. Kim, Y. Yoshida, K. Yase, B.J. Jung, E. Lim, H.K.
Shim, Applied Physics Letters, vol. 86 (2006) 043501.
[7] Y.Y. Noh, J. Ghim, S.J. Kang, K.J. Baeg, D.Y. Kim, K. Yase, "Effect of
light irradiation on the characteristics of organic field-effect transistors",
Journal of Applied Physics, vol. 100 (2006) 094501.
[8] Y.G.Park, T. Kanki, H.Y. Lee, H. Tanaka, T. Kawai, "Solid-State
Electronics", vol. 47, pg. 2221, 2003.
[9] M. Burgmair, H.P. Frerichs, M. Zimmer, M. Lehmann, I. Eisele, "Field
effect transducers for work function gas measurements: device
improvements and comparison of performance", Sensors and Actuators
B, vol. 95, pg. 183, 2003.
[10] L. Wang, D. Fine, D. Sharma, L. Torsi, A. Dodabalapur, Anal Bional
Chem, vol. 384, pg. 310, 2006.
[11] H. Bai, G. Shi," Gas Sensors Based on Conducting Polymers", Sensors,
vol. 7, pg. 267, 2007.
[12] M.I. Fedorov, Ph.D. Thesis, Institute of Chemical Physics,
Chernogolovka, Moscow, Russia, 1973.
[13] Kh.S. Karimov, Kh.M. Akhmedov, A.A. Dzhuraev, M.N. Khan, S.M.
Abrarov, M.I. Fiodorov, "Impedance hygrometer based on natural
organic material", Eurasian Chem. Tech. Journal, 3-4 (2000) , 251.
[14] Kh.S. Karimov, M.M. Ahmed, S.A. Moiz, M.I. Fedorov, "Temperature
Dependent Photoelectric Cell", Solar Energy Materials & Solar Cells,
vol. 87, pg. 61, 2005.
[15] C. Bartic, A. Campitelli, S. Borghs, "Field-effect detection of chemical
species with hybrid organic/inorganic transistors", Applied Physics
Letters, vol. 82, pg. 475, 2003.
[16] M.C. Petty, "An Introduction to Molecular Electronics", Edited by M.C.
Petty, M.R. Bryce and D. Bloor, published by Edward Arnold, Great
Britain, 1995.
[17] L.Valli, "Phthalocyanine-based Langmuir-Blodgett films as chemical
sensors", Advances in Colloid and Interface Science, vol. 116, pg. 13,
2005.
[18] T. Miyata, S. Kawaguchi, M. Ishii, T. Minami, "High sensitivity chlorine
gas sensors using Cu-phthalocyanine thin films", Thin Solid Films, vol.
425, pg. 255, 2003.
[19] A. Oprea, U. Weimar, E. Simon, M. Fleischer, H.P. Frerichs, Ch.
Wilbertz, M. Lehman, ""Copper phthalocyanine suspended gate field
effect transistors for NO2 detection", Sensors and Actuators B, vol. 118,
pg. 249, 2006.
[20] M. Bouvet, "Phthalocyanine-based field-effect transistors as gas
sensors", Anal Bioanal Chem , vol. 384, pg. 366, 2006.
[21] Kh.S. Karimov, S. Bellingeri, Y. Abe, "Processing by Centrifugation",
Edited by L.L. Regel and W.R. Wilcox, Kluwer Academic/Plenum
Publishers, New York, 2001, pg. 99.
[22] F. Gutman, L.E. Lyons, "Organic semiconductor", Part A, Robert E.
Krieger Publishing Company, Malabar, Florida, 1980, pg. 251.
[23] F. Gutman, H. Keyzer, L.E. Lyons, R.B. Somoano, "Organic
semiconductors", Part B, Robert E. Krieger Publishing Company,
Malabar, Florida, 1983, pg. 122.
[24] Kh.S. Karimov, I. Qazi, M. Mahroof-Tahir, T.A. Khan , U. Shafique. "
Photo Organic field effect transistor-s properties", Turk.J.Phys., vol. 32,
pg. 1, 2008.
[25] N.F. Mott, E.A. Davis, "Electronic Processes in Noncrystalline
Materials", Clarendon Press, Oxford, 1971.
[26] K. Akhmedov, M. Rahimova, Kh.S. Karimov, M.I. Cherkashin, J.
Academy of Sciences of Tajikistan, vol. 25, pg. 24, 1982.
[27] D.A. Neamen, "Semiconductor Physics and Devices Basic Principles",
Richard D. Irwin, Inc., USA, 1992, pg. 467.
[28] J.W. Dally, W.F. Riley, K.G. McConnell, "Instrumentation for
Engineering Measurements", 2nd ed., John Willey & Sons, Inc., New
York, U.S.A., 1993.
[29] I. Murtaza, Kh.S. Karimov, Z. Ahmad, I. Qazi , M. Mahroof-Tahir, T.A.
Khan, "Humidity Sensitive Organic Field Effect Transistor" Journal of
Semiconductors, vol. 31 (2010) 05001.
[30] C.J. Brabec, V. Dyakonov, J. Parisi, N.S. Sariciftci, "Organic
photovoltaics Concepts and realization", Springer-Verlag, Berlin,
Germany , 2003.
[31] W. Brutting, "Physics of organic semiconductors", WILEY-VCH Verlag
GmbH & Co. KGaA, Weinheim, Germany, 2005.