Small Sample Bootstrap Confidence Intervals for Long-Memory Parameter

The log periodogram regression is widely used in empirical applications because of its simplicity, since only a least squares regression is required to estimate the memory parameter, d, its good asymptotic properties and its robustness to misspecification of the short term behavior of the series. However, the asymptotic distribution is a poor approximation of the (unknown) finite sample distribution if the sample size is small. Here the finite sample performance of different nonparametric residual bootstrap procedures is analyzed when applied to construct confidence intervals. In particular, in addition to the basic residual bootstrap, the local and block bootstrap that might adequately replicate the structure that may arise in the errors of the regression are considered when the series shows weak dependence in addition to the long memory component. Bias correcting bootstrap to adjust the bias caused by that structure is also considered. Finally, the performance of the bootstrap in log periodogram regression based confidence intervals is assessed in different type of models and how its performance changes as sample size increases.




References:
[1] Velasco, C., 1999. Non stationary log-periodogram regression. J. Econometrics
91, 325-371.
[2] Geweke, J. and Porter-Hudak, S., 1983. The estimation and application
of long-memory time series models. J. Time Ser. Anal. 4, 221-238.
[3] Robinson, P.M., 1995. Log-periodogram regression of time series with
long-range dependence. Ann. Statist. 23, 1048-1072.
[4] Hurvich, C.M., Deo, R. and Brodsky, J., 1998. The mean squared error
of Geweke and Porter-Hudak-s estimator of the memory parameter in a
long-memory time series. J. Time Ser. Anal. 19, 19-46.
[5] Phillips, P.C.B., 2007. Unit root log periodogram regression. J. Econometrics
138, 104-124.
[6] Kim, C.S. and Phillips, P.C.B., 2006. Log periodogram regression: The
nonstationary case. Cowles Foundation Discussion Paper No. 1587.
[7] Phillips, P.C.B. and Shimotsu, K., 2004. Local Whittle estimation in
nonstationary and unit root cases. Ann. Statist. 32, 656-692.
[8] Arteche, J., 2004, Gaussian Semiparametric Estimation in Long Memory
in Stochastic Volatility and Signal Plus Noise Models. J. Econometrics
119, 131-154.
[9] Giraitis, L., Robinson, P.M. and Samarov, A., 2000. Adaptive semiparametric
estimation of the memory parameter. J. Multiv. Anal. 72, 183-207.
[10] Hurvich, C.M., and Deo, R.S., 1999. Plug-in selection of the number
of frequencies in regression estimates of the memory parameter of a
long-memory time series. J. Time Ser. Anal. 20, 331-341.
[11] Hassler, U. and Wolters, J., 1995. Long memory in inflation rates:
International evidence. J. Business Econ. Stat. 13, 37-45.
[12] Diebold, F.X. and Rudebush, G., 1989. Long memory and persistence
in aggregate output. J. Monet. Econ. 24, 189-209.
[13] Diebold, F.X. and Rudebush, G., 1991. Is consumption too smooth: Long
memory and the Deaton paradox. Rev. Econ. Statist. 73, 1-9.
[14] Sowell, F., 1992a. Maximum likelihood estimation of stationary univariate
fractionally integrated time series models. J. Econometrics 53,
165-188.
[15] Arteche, J. and Robinson, P.M., 2000. Semiparametric inference in
seasonal and cyclical long memory processes. J. Time Ser. Anal. 21,
1-27.
[16] Sowell, F., 1992b. Modeling long-run behaviour with the fractional
ARIMA model. J. Monet. Econ. 29, 277-302.
[17] Andrews, D.W.K., Lieberman, O. and Marmer, V., 2006. Higher-order
improvements of the parametric bootstrap for long-memory time series.
J. Econometrics 133, 673-702.
[18] Andersson, M.K. and Gredenhoff, M.P., 1998. Robust testing for
fractional integration using the bootstrap. Working Paper Series in
Economics and Finance 218, Stockholm School of Economics, Sweden.
[19] Hidalgo, J., 2003. An alternative bootstrap to moving blocks for time
series regression models. J. Econometrics 117, 369-399.
[20] Silva, E.M., Franco, G.C., Reisen, V.A. and Cruz, F.R.B., 2006. Local
bootstrap approaches for fractional differential parameter estimation in
ARFIMA models. Comput. Statist. Data Anal. 51, 1002-1011.
[21] Arteche, J. and Orbe, J., 2005. Bootstrapping the log-periodogram
regression. Econ. Letters 86, 70-85.
[22] Agiakloglou, C., Newbold, P. and Wohar, M., 1993. Bias in an estimator
of the fractional difference parameter. J. Time Ser. Anal. 14, 235-246.
[23] Paparoditis, E. and Politis, D., 1999. The local bootstrap for periodogram
statistics. J. Time Ser. Anal. 20, 193-222.
[24] Efron, B., 1982. The jackknife, the bootstrap, and other resampling
plans. Volume 38 of CBMS-NSF Regional Conference Series in Applied
Mathematics. SIAM.
[25] Efron, B., 1987. Better bootstrap confidence intervals. J. Amer. Statistical
Assoc. 82, 171-200.
[26] Mackinnon, J.G. and Smith, A.A., 1998. Approximate bias correction
in econometrics. J. Econometrics 85, 205-230.
[27] Efron, B., 1979. Bootstrap methods: Another look at the jackknife. Ann.
Statist. 7, 1-26.
[28] Davidson, R. and MacKinnon, J.G., 2006. Bootstrap methods in econometrics.
In: Mills, T.C. and Patterson, K.D. (eds.), Palgrave Handbooks
of Econometrics: Volume 1, Econometric Theory. Palgrave Macmillan,
812-838.
[29] K¨unsch, H.R., 1989. The jackknife and the bootstrap for general
stationary observations. Ann. Statist. 17, 1217-1261.
[30] Liu, R.Y. and Singh, K., 1992. Moving blocks jackknife and bootstrap
capture weak dependence. In: LePage, R. and Billard, L.(Eds.) Exploring
the limits of bootstrap. Wiley, New York, 225-248.
[31] Lahiri, S.N., 1999. Theoretical comparisons of block bootstrap methods.
Ann. Statist. 27, 386-404.
[32] Kilian, L., 1998. Small sample confidence intervals for impulse response
functions. Rev. Econ. Statist. 80, 218-230.
[33] Shao, J. and Tu, D., 1995. The jackknife and bootstrap. Springer Verlag:
New York.
[34] Efron, B. and Tibshirani, R.J., 1993. An introduction to the bootstrap.
Chapman and Hall: New York.
[35] Davison, A.C. and Hinkley, D.V., 1997. Bootstrap methods and their
application. Cambridge University Press: Cambridge.
[36] Arteche, J., 2006. Semiparametric estimation in perturbed long memory
series. Comput. Statist. Data Anal. 51, 2118-2141.
[37] Hurvich, C.M., Moulines, E. and Soulier, P., 2005. Estimating long
memory in volatility. Econometrica 73, 1283-1328.
[38] Sun, Y. and Phillips, P.C.B., 2003. Nonlinear log-periodogram regression
for perturbed fractional processes. J. Econometrics 115, 355-389.
[39] Andrews, D.W.K. and Guggenberger, P., 2003. A bias-reduced logperiodogram
regression estimator for the long-memory parameter.
Econometrica 71, 675-712.