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Abstract— The log periodogram regression is widely used in em-
pirical applications because of its simplicity, since only a least squares
regression is required to estimate the memory parameter, d, its good
asymptotic properties and its robustness to misspecification of the
short term behavior of the series. However, the asymptotic distribution
is a poor approximation of the (unknown) finite sample distribution
if the sample size is small. Here the finite sample performance of dif-
ferent nonparametric residual bootstrap procedures is analyzed when
applied to construct confidence intervals. In particular, in addition to
the basic residual bootstrap, the local and block bootstrap that might
adequately replicate the structure that may arise in the errors of the
regression are considered when the series shows weak dependence in
addition to the long memory component. Bias correcting bootstrap
to adjust the bias caused by that structure is also considered. Finally,
the performance of the bootstrap in log periodogram regression based
confidence intervals is assessed in different type of models and how
its performance changes as sample size increases.

Keywords— bootstrap, confidence interval, log periodogram re-
gression, long memory.

Authors are with Dpt. Econometria y Estadistica, University of the Basque
Country, Avda. Lehendakari Agirre 83, 48015 Bilbao, Spain (email: je-
sus.orbe @ehu.es)

I. INTRODUCTION

Long memory processes have emerged as a useful tool to
fill the gap between weakly dependent stationary processes
and nonstationary integrated processes with a unit root. Long
memory processes are characterized by a strong dependence
such that the lag-j autocovariances y; decrease hyperbolically
as j — 00

vy~ G de*l

for some finite constant GG, d is the memory parameter and
a ~ b means that a/b tends in the limit to 1. Such processes are
usually denoted I(d). For d > 0, " |y;| = oo but stationarity
is guaranteed as long as d < 1/2 and mean reversion holds
for d < 1. It is also usually assumed that d > —1/2, which
warrants invertibility.

Long memory can alternatively and equivalently be defined
in the frequency domain. A stationary time series process has
long memory if its spectral density function f(-) satisfies

FO) ~CA7* as A =0, (1)

for some positive finite constant C. Under positive long
memory, which is the most common case in economic and
financial series, the spectral density diverges at the origin at
a rate governed by d. If d > 1/2 the process is not stationary
and, by definition, the spectral density does not exist. However
pseudo spectral density functions can be similarly defined (e.g.
[1]) with a behavior as in (1).

One issue of main interest in these processes is the es-
timation of d. There is a large number of different proce-
dures, parametric as maximum likelihood or the asymptotically
equivalent Whittle estimation, semiparametric or local as the
log periodogram regression, the local Whittle or the average
periodogram and nonparametric such as the R/S. Perhaps
the most popular is the log periodogram regression estimator
(LPE hereafter) originally proposed by [2] and analyzed in
detail in [3] and [4]. The LPE is widely used in empirical
applications because of its simplicity, since only a least squares
regression is required, its good asymptotic and finite samples
properties and its robustness to misspecification of the short
term behavior of the series. Taking logarithms of the local
specification of the spectral density in (1), the LPE (d) is
obtained by least squares in the regression

logl; =a+dX; +u;, j=1,..,m, 2)

where X; = —2logl;, a = logC + ¢, ¢ = 0.577216 is
Euler’s constant, [; = (27rn) =1 Y1, z exp(—it);)|? is the
periodogram of the series x4, t = 1, .., n, at Fourier frequency
Aj = 2mj/n, n is the sample size, u; = log(I; f(A;)~!) —
¢ and m represents the bandwidth, that is the number of
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frequencies used in the estimation. For the asymptotics, this
bandwidth has to increase with n but at a slower rate such that
the band of frequencies used in the estimation degenerates to
zero and the local specification in (1) remains valid. [3] and
[4] proved the consistency of d in the stationary and invertible
region —0.5 < d < 0.5, and obtained its limit distribution

2

vm(d—d) % N (o,%). 3)
Reference [1] showed that the consistency holds even in the
nonstationary region [0.5,1) and the same limit distribution
remains valid for d € [0.5,0.75). Consistency is preserved
in the unit root case d = 1 with a mixed normal limit
distribution ([5]) but the LPE is inconsistent for d > 1 ([6]).
For similarities with the local Whittle estimator, the asymptotic
distribution of the LPE for d € [0.75, 1) is expected to be non
normal and non pivotal depending on d ([7]).

In practice the choice of the bandwidth is crucial, a large
m decreases the variance at the cost of a higher bias which
can be extremely large in some situations, for example in the
presence of some short term component such as those analyzed
below. The choice of an optimal bandwidth is not a simple
task. Some attempts have been made in [8], who proposes to
estimate the bandwidth together with the rest of parameters by
minimizing the contrast function, [9] who propose an adaptive
LPE, and [10] with a plug in version of an optimal bandwidth
in an asymptotic mean squared error sense. However, the
performance of all these procedures is not very satisfactory
and the results for a grid of bandwidths are usually shown in
empirical applications.

The log-periodogram estimation of the memory parameter
in economic series raises the problem of the small sample size
since many economic time series consist of low frequency,
monthly ([11]), quarterly ([12] and [13]) or even yearly ([12]
and [13]) data. Furthermore, if the series shows a rich spectral
behavior around the origin the bandwidth has to be low enough
to avoid a large bias in the estimation of d ([14]). Also the
strong seasonality in many quarterly and monthly economic
series compels the use of a small bandwidth to avoid distorting
influence of neighbouring seasonal spectral poles ([15]). As
a result the number of frequencies used in the estimation is
small and, as noted in [16], the asymptotic distribution in (3)
is a poor approximation of the small sample distribution of
d. In this situation, the bootstrap could be a useful tool to
make inference without relying on the asymptotic probability
distribution.

The application of the bootstrap to approximate the dis-
tribution of some statistics of a long memory series x,
t = 1,2,...,n, has primarily focus on generating bootstrap
samples of the series to get the bootstrap distribution of
a statistic T'(z1,...,%,) (usually an estimator of d or a t-
statistic). This has been done by a plug-in parametric bootstrap
([17]), by a pre-whitening and re-coloring bootstrap either in
the time domain ([18]) or in the frequency domain ([19]),
or bootstrapping directly the periodogram ([20]). In the LPE
setup the bootstrap is carried out previously to the definition
of the regression model (2) and the bootstrapped dependent
variable is then the logarithm of the periodogram of the boot-

strap samples. Reference [21] proposed instead to bootstrap
directly the residuals in the regression (2) avoiding in that
way the necessity to deal with the temporal dependence of x
with the corresponding computational savings and robustness
against misspecification. We focus here in this last approach
and analyze the implementation of different bootstraps on the
coverage of confidence intervals.

As already mentioned, the LPE can be highly biased in the
presence of some weak dependent component. Reference [22]
shows that an autoregressive or moving-average component in
an ARFIMA model can seriously distort the estimation of the
memory parameter with a large bias. The source of the bias is
the effect of these short memory components on the spectral
behavior around frequency zero such that the approximation
(1) is only reliable for frequencies very close to the origin.
This weak dependence, not considered in the regression in (2),
affects the behavior of w; such that it shows some remaining
structure. To try to capture this structure we consider a version
of the local bootstrap of [23], applied also in a similar long
memory context by [20], and compare its performance with
the nonparametric residual and block bootstrap. Contrary to
the local bootstrap that maintains the global structure of the
residuals, the block bootstrap, designed for time dependent
data, conserves the local or neighbouring structure by boot-
strapping different overlapping blocks. We are also concerned
with the effects of the bias in the LPE and evaluate the capacity
of different bias corrections usually employed in the bootstrap
literature, namely the Bias Corrected (BC) percentile of [24],
the accelerated Bias Corrected (BC,) percentile [25] and the
Constant Bias Correcting (CBC) estimator of [26]. In addition
the bootstrap-t method of [24], which implicitly includes a
bias adjustment, is also examined.

The paper is organized as follows. Section II describes the
different bootstrap procedures that we analyze in the Monte
Carlo in Section III. Finally Section IV concludes.

II. DIFFERENT BOOTSTRAPS PROCEDURES IN LPE

The bootstrap, first introduced by [27], is an important
tool for statistical inference to approximate standard errors of
estimators, confidence intervals or p-values for test statistics,
especially in complicated models. The implementation of the
bootstrap relies on using the original sample as if it were a
population to generate pseudo data. New samples, bootstrap
samples, are then obtained resampling from it. Therefore, the
bootstrap is usually interesting to approximate the asymptotic
distribution of a statistic in complicated models or an unknown
finite sample distribution when the asymptotic distribution
does not resembles the finite sample counterpart.

Here the bootstrap to calculate confidence intervals for the
LPE that improve standard confidence intervals based on the
asymptotic distribution in a small sample size situation is used.
We focus on a bootstrap in a regression context, using the
LPE regression (2). There are two general bootstrap based
regression methods: The cases resampling or pairs bootstrap
considers the regressors as random covariates, changing from
sample to sample, whereas the model based resampling or
residual bootstrap takes the regressors as fixed. We use here a
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nonparametric residual bootstrap since the regressor is based
on non stochastic Fourier frequencies and we do not assume
any probability distribution for the error term in the regression
model, involving a nonparametric resampling of the residuals.

In this section the three nonparametric bootstrap procedures
that are considered competitive to replicate the finite sample
distribution of the LPE are described. In all of them, after
obtaining the OLS estimated coefficients, the #; residuals
are rescaled to account for the leverages of the observations,
since even when the errors are homoscedastic, the residuals
have variances that depend on those leverages. Therefore the
modified residuals are resampled.

A. Residual bootstrap (RB)

The appropriate performance of this simple bootstrap in the
LPE context over other procedures, such as the wild bootstrap,
has been discussed in [21]. The residual bootstrap for the log
periodogram regression follows these steps:

1) Obtain the LPEs, d, d, by least squares in the regression
(2) and the residuals 4; = logI; — a — dX;. Construct
the modified residuals ©; = a;/(1 — h;)Y/2 ([28]),
where h; = [X(X'X)71X’];; and X is the matrix with
columns the regressors in (2), that is 1 and X, ensuring
in that way constant variances of 9, if the disturbances
u; were homoscedastic.

2) Resampling with replacement from the modified resid-
uals ©¢;, and giving equal probability 1/m to every
residual, get B bootstrap samples @;;j, b=1,2,...,Band
j = 1,...,m. Using the empirical distribution function
of the residuals and based on model (2) we obtain the
corresponding bootstrap dependent variable log I, =
a+dX; + 0.

3) Fit the regression model (2) in each bootstrap sample to
obtain the B bootstrap estimates d;, b =1,..., B.

B. Residual local bootstrap (RLB)

The RB implicitly assumes that the errors do not have any
structure and their behavior approximate an iid sequence. This
can be quite unrealistic, especially when the long memory
series contains also a short memory component. We propose
here a version of the local bootstrap ([23]) that tries to
capture the structure of the errors by bootstrapping only in
a neighborhood of each observation. It follows these steps:

1) Step 1 in the RB.

2) Select a resampling width kp, € N, kp, < [m/2] for []
denoting ’the integer part of”.

3) Define i.i.d. discrete random variables Sq, ..., .S, taking
values in the set {0, +1,, ..., £k, } with equal probabil-
ity 1/(2k,, + 1).

4) Generate B bootstrap series ﬁ;‘j = D)j45,) if l7 + S| >
0,05 =01if j+5; =0forb=1,2,....,B,j =1,...,m.

5) Generate B bootstrap samples for the dependent variable
log I;; = a+dX;+ 05 forb=1,2,...,B,j=1,...,m.

6) Fit the regression model (2) in each bootstrap sample to
obtain the B bootstrap estimates di, b= 1,...,B.

C. Residual block bootstrap (RBB)

The local bootstrap attempts to conserve the global structure
of the residuals by resampling locally in a neighborhood of
each residual. On the contrary, the block bootstrap tries to
maintain the local structure of the residuals by resampling
blocks of observations. The idea of the block bootstrap is
similar to the iid nonparametric bootstrap, both resampling
observations with replacement. But instead of resampling
single observations, the block bootstrap resamples blocks of
consecutive observations. Different versions of block bootstrap
have been proposed. We use here the moving blocks bootstrap
proposed by [29] and [30], which has better properties than
the version of non overlapping blocks ([31]).

1) Step 1 in the RB.

2) Select the block size [ and obtain m — [ + 1 possible
overlapping blocks of consecutive modified residuals of
length [.

3) Select (m/l) blocks resampling with replacement from
the m — [ + 1 overlapping blocks, that is, giving
probability 1/(m — I + 1) to each overlapping block,
and concatenating these blocks to obtain the bootstrap
sample of modified residuals of size m.

4) Generate B bootstrap samples for the dependent variable
logly; = a+dX;+0; forb=1,2,..,B,j=1,..,m.

5) Fit the regression model (2) in each bootstrap sample to
obtain the B bootstrap estimates d;, b =1, ..., B.

These bootstrap techniques are used to construct confidence
intervals trying to improve the coverage of confidence intervals
based on the asymptotic distribution defined as

In_oy = (d — 21_%5%(62); d— za sAe(cz))
where sﬁe(d) is the OLS estimate of the standard error and z,
indicate de 100 - ath percentile of a N (0, 1) distribution. The
use of the OLS standard error sAe(J) instead of the asymptotic
variance in (3) has proved to significantly improve the finite
sample coverage probabilities.

For each of the three bootstrap resampling strategies we
consider five different classes of bootstraps confidence inter-
vals for the memory parameter: the percentile interval (P), the
constant bias correction percentile interval (CBC), the bias
corrected interval (BC), the accelerated bias corrected interval
(BCa) and the bootstrap-t interval (b-t).

1) The basic percentile method (P), proposed by [27], con-

siders the existence of some monotonic transformation
of the parameter d, ¢ = g(d), verifying

¢—¢~N(0,0% 4

has the advantage of its simplicity because it does not
require knowledge of the parameters defining the (possi-
bly unknown) distribution of the statistic of interest. This
method does not require of knowing of a o parameter
or the normalizing function of the parameter ¢. The
(1 — «) percentile interval first is calculated for ¢ and
then transform this back to the d scale The (1 — )
percentile interval is defined as

I<1*”>:(d((8+1)<%>) P dBina-g ))‘
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where the CZ;” denotes the jth ordered value of the boot-
strap estimates of d. So we estimate the a/2 percentile
by the (B + 1)(§) ordered value of d*. We choose a B
value such that (B +1)(5) is an integer.

For the percentile method to work well we need d to
be an unbiased estimator of the memory parameter. But
this does not usually happen. Next we consider different
alternatives that try to handle this possible bias.
Reference [26] proposed a method for reducing the
finite sample bias of consistent estimators using a pre-
bootstrap estimation of the bias. The constant bias
correcting (CBC) estimator is obtained as d=d-b
where b is a bootstrap estimate of the finite sample bias
of d. This bias correction is adequate when the bias
function does not depend on d, which is the case, at
least asymptotically, for the LPE in many long memory
models [4]. The bias is estimated in a prior bootstrap as

o1 E .
b=—=S "d -
Bb;’

where JZ is the LPE obtained in the bootstrap sample b
out of B replications. With this correction the confidence
interval is obtained as in the basic percentile with the
estimates of d in each bootstrap replication corrected
with the bias estimate b

I(l—a):(d((BJrl)(%)) ; ((B+1><1*%>)>'

In fact, for each bootstrap replication a bootstrap bias
correction should be applied resulting in a double boot-
strap. However, this approach would be computationally
infeasible in our Monte Carlo and we instead use the
same bias estimate for every bootstrap replication in a
bootstrap after bootstrap procedure ([32]).
In order to improve the coverage probability of the basic
percentile interval [24] introduced the bias-corrected
(BC) percentile. This method, as in the basic percentile
one, based on the existence of some monotonic function
¢ = g(d), but in this case considering the possibility
of bias by introducing a bias parameter ko in the
distribution of the statistic of interest.

¢ — ¢~ N(~koo,0%) = % ~ N(—ko,1)

The confidence interval is then constructed as

I<1—a>:<d<(3+n<%>) Pod

where

«

(B+1)(1—7)))

and 12 =@ (2ko+21-3),

® is the standard normal cumulative distribution func-
tion and kg is the bias-correction parameter that can be

estimated as
A -~ d < d
ko= ® 1 (ﬁ{ }>

4)

5)

where ﬁ{d* < cZ} represents the number of bootstrap
estimates d* smaller than d. This method improves the
performance of the percentile method in non symmetric
situations. However if the distribution of d* is symmetric
about d, then ky = 0 and P and BC confidence intervals
are the same.

The accelerated bias-corrected (BC,) percentile method
of [25] accounts also for some unknown monotone
transformation ¢ = ¢g(d), some unknown bias factor kg
and some unknown skewness or acceleration correction
factor s so that

¢ — ¢ ~ N(¢— koo (9),0%(¢))

where, now, instead of considering a constant o, we
have the possibility of changing with ¢, o(¢) = 1+ s¢,
such that bias and variance can depend on it. The BC,
confidence interval is defined as

In-a) = (d(<3+1><%>) + Nwrna-g ))’

where
ko + za
1fs(k0+z%)

—® kﬁ—szl*% .
1—s (ko + 21,%)

If the shape, or skewness, of the probability distribution
of d does not change when d varies, the acceleration
parameter s takes a value of zero and this confidence
interval will be equal to the BC confidence interval. In
addition, if the kg parameter is zero we are in the basic
percentile case.

Although the bias constant kg is estimated as in the BC,
the acceleration parameter s is not easy to estimate and
different ways have been proposed. In this paper, we use
the estimate of [33], adequate for regression models like

2

| D

and

1—

| D

L o3 3

s=- 6m7/26 553/2 ZUJZXJ
where &; = # and S, = Y71, (X; — X)?,
Y: Zj%lxj.

The percglntile—t or bootstrap-t method ([24]) is based
on a given studentized pivot, in this case: ¢ = i@%.
Applying the percentile method to the ¢ statistic the
estimates of the required percentiles are obtained. The

resulting (1 — «) confidence interval is

= (d S LTS se(d)t((BH)(%)))

where the bootstrapped ¢ statistics are t* = s‘Z:(_dlf)'
bias correction is implicit in the definition of the t*
statistic. In a general context, the main disadvantage

of this method is the necessity of an estimate of the
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standard error of the parameter. However, in this case,
the estimate of the standard error of the parameter is
easily obtained as

1/2
22
Uu

ZT: 1 (Xj - Y) 2
For a more detailed description of these and others bootstrap

resample procedures and confidence intervals see, for example,
[34], [33] or [35].

ge(d) =

III. MONTE CARLO SIMULATION STUDY

The performance of the bootstrap in LPE based confidence
intervals is assessed in three different type of models:

o Model 1: (1 —0.9L)(1 — L)z, = ey,

o Model 2: (1 —0.3L)(1 — L)%x; = ey,

o Model 3: z; = 71 (1 — L)%y +e94
where L is the lag operator (Lx; = x;—1), €1+ and €9 are
independent standard normal series and d € (0, 0.4, 0.8). For
d = 0 the series are short memory such that the spectral
density function is positive, bounded and continuos at every
frequency. The value d = 0.4 corresponds to a stationary long
memory series with a spectral density diverging at the origin.
For d = 0.8 the series is nonstationary and mean reverting.
Note that in this case the asymptotic distribution in (3) does
not apply and the LPE, although consistent, has a nonnormal
limit distribution that depends on d (non pivotal).

The first two models belong to the ARFIMA class and have
a spectral (pseudospectral in the nonstationary case) density
function

1 [2sin(3)]* 1
F =5 \17¢2—M|2 (1= )

for ¢ = 0.9,0.3 in Models 1 and 2 respectively. Both include
an AR(1) short memory component with moderate (Model 2)
and high (Model 1) dependence that gives rise to a bias in the
LPE if a large bandwidth is used, especially in Model 1. Model
3 is a long memory series perturbed by an added noise with
a long run noise to signal ratio 72. These models have gained
recently great interest in the econometric modeling since it
encompasses many economic and financial series (e.g. [36]
and [37]). In Models 1 and 2 the asymptotic bias of the LPE
does not depend on d. However, in Model 3 the asymptotic
bias is a function of d ([38]) such that the CBC should perform
worse. The bias in this class of models is also very high if a
large bandwidth is used.

Since the bootstrap is essentially beneficial with a low
sample size, we only consider n = 128, which is comparable
to the number of observations in many economic series as
those analyzed in the next section. For each model three
bandwidths are considered m = 5, 10 and 20. For the local
bootstrap we use different resampling widths k,, = 2 (for
m = 5), kp, = 2,4 (for m = 10) and k,, = 2,4,8 (for
m = 20) and the block bootstrap is analyzed with blocks
of length 5 (for m = 10) and 5, 10 (for m = 20), which are
similar to the lengths of the blocks in the local bootstrap. Since
the results are very sensitive to the choice of the bandwidth

IA72% as A —0

we also consider the plug-in optimal bandwidth proposed by
[10] and defined as m* = Cn?/5 for

A 97 \ /5 ,
_ 2/
¢ <1287r2> K

where K is obtained as the third coefficient in an ordinary
linear regression of logI; on (1,—2log /\j,/\?/Z) for j =
1,2,..., An%, with 4/5 < § < 1 and A an arbitrary constant.
Following [10], we use § = 6/7 and A = 0.25. Note that this
optimal bandwidth is only consistent for Models 1 and 2 in
the stationary region, but we use it also in the rest of cases
for illustrative purposes. In practice m* is obtained as the
median of the optimal bandwidths in 1000 series generated
in each model. The use of the median instead of the mean
avoids the distorting effect of extreme cases. We get in this
way m* = 12, 13 and 12 for Models 1, 2 and 3 respectively.
The optimal bandwidth is quite robust to different values of d
(for large d the optimal bandwidth differs at most one unity
from the corresponding optimal bandwidth for low d) and we
use the same m* for all d. Due to the poor performance of
the RBB, only the RB and RLB (with k,, = 2, 4 and 6) are
analyzed for m™*. The number of bootstraps is B = 999 which
is large enough for the calculous of confidence intervals ([34]).
The number of simulations is 1000.

TABLE I
LPE 95% CONFIDENCE INTERVALS COVERAGE FOR m = 5

AR(D __ p=09 AR(D __ p=03 SPN

d=0 =04 =038 d=0 d=04 __ d=038 =0 d=04 __ d=08
Asym
728 728 769 859 855 86 863 794 85
1.790 1756 1560 1766 1761 1704 1814 1770 1717
RB
P 705 T4 752 847 849 354 353 781 839
1734 1702 1520 1714 1713 1657 1758 1718 1.663
CBC 71 723 75.6 84.7 85.3 85.8 85.4 78.5 84.7
1769 1.737 1553 1.749 1749 1690 1792 1752 1.697
BC 709 70.7 75.1 83.9 84.9 853 85 778 835
1.725 1.693 1511 1704 1706 1648 1749 1709 1.653
BCa 709 714 753 843 84.7 854 852 778 84.1
1740 1706 1525 1719 1717 1662 1763 1722 1670
bet 91.8 88.5 90 952 94.8 953 95.8 89.8 %42
2.849 2802 2481 2813 2806 2709 2800 2818 2728
RLB(2)
P 66 686 736 905 90.1 913 90.6 347 90.2
1.668 1.636 1.443 1.631 1.631 1579 1657 1638  1.600
CBC 70.6 70.7 724 89.2 89.9 89.9 90 84.2 90
1.813 1.781 1.574 1.783 1.789 1.727 1.815 1.790 1.739
BC 62.5 64 64.2 80 80.6 793 79.9 752 79.9
1561 1524 1355 1536 1518 1463 1548 1519 1.487
BCa 615 63.4 644 80.8 80 793 795 75.8 79.6
1559 1527 1356 1537 1518 1465 1552 1524 1488
bet 89.4 873 89.1 955 9.4 94.6 957 89.6 933

2.714 2.665 2.383 2.698 2.668 2.574 2.763 2.686 2.609

SPN stands for the Signal Plus Noise process in Model 3. RB and RLB(k 4y, ) denote the residual bootstrap and the
residual local bootstrap with resampling width Ky, . In each cell the first number is coverage frequency in percentages
over 1000 simulations and the number below it is the average length of the interval. Asym, P, CBC, BC, BCa and b-t

denote the confidence intervals based on the asymptotic distribution, the basic percentile, the constant bias correcting

percentile, the bias corrected, the accelerated bias corrected and the bootstrap-t respectively.

Tables I-IV show the coverage frequencies in percentage
(first number in each cell) and the average length of the interval
(under the frequencies) of confidence intervals for a 95%
nominal confidence level over 1000 Monte Carlo replications
with bandwidths m = 5, 10, 20 and m*. The following
conclusions can be extracted:

o The bootstrap confidence intervals clearly beats the
asymptotic distribution with better coverage frequencies.
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bootstrap-t respectively.

6
TABLE II TABLE III
LPE 95% CONFIDENCE INTERVALS COVERAGE FOR m = 10 LPE 95% CONFIDENCE INTERVALS COVERAGE FOR m = 20
AR(T) p=0.9 AR(1) p=03 SPN AR(T) p=0.9 AR(I) p=0.3 SPN
d=0 d=0.4 d=0.8 d=0 1=0.4 d=0.8 d=0 d=0.4 d=0.8 d=0 d=0.4 d=0.8 d=0 d=0.4 d=0.8 d=0 d=0.4 d=0.8
Asym Asym
347 385 47 922 89.6 91 89.9 80.2 823 2.8 4 20.1 90.8 89.6 87.7 92.9 57.6 46.8
1.097 1.068 0.907 1.085 1.097 1.053 1.086 1.099 1.084 0.696 0.678 0.522 0.687 0.690 0.676 0.694 0.693 0.689
RB RB
P 37.7 40.5 49 92.4 90.1 90.6 90.5 79.8 81.4 P 3.6 5.6 229 92.7 91.1 89.4 93.1 55.1 44.1
1.102 1.073 0916 1.086 1.100 1.052 1.090 1.100 1.089 0.703 0.685 0.531 0.691 0.696 0.681 0.700 0.697 0.696
CBC 37.1 404 48.9 925 90.5 91 90.7 79.9 80.8 CBC 3.7 5.8 22.8 92.4 90.8 89.4 93.2 55.1 43.6
1.104 1.074 0917 1.088 1.102 1.054 1.092 1.102 1.090 0.703 0.685 0.531 0.691 0.696 0.681 0.700 0.697 0.696
BC 39.1 435 515 92.5 90.5 91.3 90 78.4 80 BC 4.7 74 252 92.6 91 90.4 93.1 524 40.4
1.102 1.073 0916 1.087 1.101 1.053 1.090 1.099 1.090 0.705 0.687 0.532 0.693 0.698 0.684 0.702 0.699 0.698
BCa 39 434 51.3 925 90.4 91.3 90 785 80.1 BCa 4.7 74 252 92.6 91 90.4 93.1 52.4 40.4
1.102 1.073 0915 1.086 1.101 1.053 1.090 1.099 1.089 0.705 0.687 0.532 0.693 0.698 0.684 0.702 0.699 0.698
b-t 50 536 62.6 952 94.4 952 93.7 84.4 85.7 b-t 5.1 7.6 25.6 94.5 925 92 94.3 579 47
1.297 1.263 1.073 1.285 1.300 1.246 1.286 1.304 1.283 0.749 0.729 0.561 0.738 0.742 0.727 0.746 0.744 0.741
RLB(2) RLB(2)
P 258 288 36.7 88.9 85.6 87 87.3 753 76.5 P 4 6 222 83.4 81 79 88.7 48 349
0.954 0.929 0.792 0.929 0.948 0.895 0.937 0.939 0915 0.625 0.610 0.492 0.594 0.598 0.576 0.595 0.596 0.597
CBC 262 30.7 38 87.6 82.9 84.8 84.9 75.1 75.6 CBC 4.2 6.4 226 83.3 80.8 7.7 88.2 48 354
0.967 0.940 0.803 0.942 0.960 0.906 0.952 0.953 0.927 0.629 0.614 0.496 0.598 0.602 0.578 0.600 0.600 0.598
BC 26.1 30.6 38.1 83.7 79.8 81.7 80.8 70.8 71.3 BC 4.5 6.6 233 81 78.6 76 86.3 44.4 318
0.947 0.920 0.793 0.924 0.942 0.892 0.932 0.935 0.908 0.625 0.613 0.496 0.597 0.601 0.579 0.599 0.599 0.600
BCa 26 30.6 38.1 83.7 79.8 81.6 80.8 70.9 714 BCa 4.5 6.6 233 81 78.6 76 86.3 44.4 318
0.947 0.920 0.794 0.923 0.941 0.892 0.932 0.935 0.907 0.625 0.613 0.496 0.597 0.601 0.579 0.599 0.599 0.600
b-t 4.5 483 572 93.4 92.7 93.6 935 83.4 83.5 b-t 57 7.7 275 90.1 87.9 84.7 927 535 43.1
1.275 1.229 1.086 1.236 1.261 1.190 1.259 1.255 1.227 0.712 0.698 0.584 0.672 0.681 0.653 0.676 0.673 0.678
RLB(4) RLB(4)
P 288 328 42 93.6 91.8 93 92.8 81.5 81.6 P 52 6.8 254 87.5 84.7 83.2 923 53.7 375
1.044 1.018 0.862 1.018 1.040 0.990 1.021 1.032 1.018 0.677 0.656 0.531 0.644 0.650 0.626 0.647 0.648 0.650
CBC 33.7 373 443 90.1 87.2 88.6 88.1 78.4 80.4 CBC 5.6 77 24.2 87.2 85 82.1 90.7 53.6 39.5
1.053 1.025 0.867 1.032 1.051 1.000 1.035 1.044 1.027 0.677 0.659 0.532 0.646 0.651 0.627 0.649 0.650 0.648
BC 343 384 44.1 86.1 82.6 86.1 82.3 74.8 76.4 BC 7.3 9.2 26.2 85.1 82.2 79.3 87.9 50.2 388
1.030 1.006 0.856 1.005 1.027 0.974 1.008 1.019 1.001 0.676 0.657 0.532 0.645 0.650 0.625 0.649 0.647 0.644
BCa 342 38.1 44 86.1 82.5 86 82.4 74.8 76.4 BCa 7.3 9.2 26.2 85.1 82.2 79.3 87.9 50.2 388
1.030 1.006 0.856 1.004 1.027 0.974 1.008 1.018 1.000 0.676 0.657 0.532 0.645 0.650 0.625 0.648 0.647 0.644
b-t 47 528 64 97 96 97.2 96.4 86.6 86.4 b-t 6.2 9.1 311 92.9 92.1 89.5 95.1 585 452
1.314 1.278 1.118 1.284 1.310 1.249 1.292 1.300 1.288 0.764 0.746 0.621 0.723 0.733 0.705 0.729 0.727 0.728
RBB(5) RLB(8)
P 21 24.8 317 76 74.2 76.7 73.8 60.9 62.6 P 4.2 6 26.4 90.1 88.8 86.5 95.1 54.8 359
0.783 0.761 0.646 0.752 0.773 0.741 0.750 0.759 0.770 0.698 0.676 0.543 0.677 0.681 0.659 0.680 0.680 0.683
CBC 218 25.1 312 76.2 74.6 755 753 63.2 64.3 CBC 6.2 8.1 257 88.8 86.4 84.4 91.9 56.5 4.5
0.777 0.758 0.644 0.749 0.772 0.738 0.749 0.760 0.765 0.695 0.672 0.541 0.675 0.679 0.660 0.681 0.680 0.679
BC 20.8 243 30.6 73.9 717 73.9 72.7 59 60.5 BC 10.1 114 27.5 86.3 84.8 815 88.4 529 44.6
0.740 0.721 0.614 0.717 0.739 0.705 0.712 0.724 0.735 0.700 0.680 0.542 0.679 0.683 0.659 0.678 0.678 0.665
BCa 20.7 243 30.6 73.9 715 73.9 72.7 589 60.5 BCa 10.1 114 27.5 86.3 84.8 815 88.4 529 44.6
0.740 0.722 0.614 0.717 0.739 0.705 0.712 0.725 0.735 0.700 0.680 0.542 0.679 0.683 0.659 0.678 0.678 0.665
b-t 285 30.5 389 79.6 772 79.6 76.5 63.9 64.4 b-t 4.7 7.6 32 94.2 929 92.8 96.7 58.9 383
0.912 0.885 0.757 0.871 0.890 0.849 0.865 0.865 0.893 0.763 0.747 0.611 0.739 0.746 0.724 0.746 0.745 0.745
RBB(5)
. . . . P 2.1 3.4 16.1 82.5 81.4 782 86.1 41.8 329
SPN stands for the Signal Plus Noise process in Model 3. RB, RLB(ky,) and RBB(1) denote the residual bootstrap, the 0.568 0.560 0437 0.562 0.557 0.549 0.564 0562 0.574
residual local bootstrap with resampling width &, and the residual block bootstrap with block length . In each cell the CBC 24 32 17 82.4 80.4 78.6 86 417 332
. . i o R 0.567 0.559 0437 0.560 0.557 0.550 0.564 0.562 0.573
first number is coverage frequency in percentages over 1000 simulations and the number below it is the average length of BC 29 38 17.9 8.4 81 79 85.7 40.9 318
the interval. Asym, P, CBC, BC, BCa and b-t denote the confidence intervals based on the asymptotic distribution, the 0.568 0.559 0.438 0.562 0.557 0.549 0.564 0.562 0.574
BCa 29 3.8 17.9 82.4 81 79 85.7 40.9 318
basic percentile, the constant bias correcting percentile, the bias corrected, the accelerated bias corrected and the 0.568 0.559 0438 0.562 0.557 0.549 0.564 0.562 0.574

b-t 32 4.7 205 85 83.8 80.6 87.7 443 353
0.612 0.603 0.476 0.599 0.598 0.585 0.597 0.598 0.615

RBB(10)
P 1.9 2.1 13.5 74.1 1.1 68.6 77.8 339 215

0.481 0.474 0.381 0.471 0.472 0.462 0.474 0.476 0.485

CBC 2 2.7 14.8 75.7 727 70.6 79.9 359 278

0.486 0.481 0.387 0.476 0.478 0.467 0.480 0.482 0.490

BC 1.8 2.4 13.7 743 69.5 67.9 76.9 315 229

0.462 0.456 0.366 0.455 0.453 0.446 0.456 0.460 0.461

BCa 1.8 24 13.7 743 69.5 67.9 76.9 315 229

0.462 0.456 0.366 0.455 0.453 0.446 0.456 0.460 0.461

The block bootstrap performs worse than the local and bt 22 27 81 777 731 74 W7 2 229
0.512 0.507 0.419 0.500 0.501 0.486 0.496 0.502 0.516

basic residual based bootstraps for any block length. We
should not forget that the RBB is designed for time
series to maintain the original time dependence in the
bootstrapped resamples whereas the regression model (2)
is defined in the frequency domain and there is not any
time or serial dependence on it.

« The different bias correction techniques are only slightly
beneficial in Model 1 with a large bandwidth where the
bias of the LPE is especially large. The BC and BCa give
better results in terms of coverage frequencies than the
CBC and the basic P. However the bootstrap-¢ generally
overcomes all the others even in these highly biased
situations.

o The choice of the bandwidth is crucial. The best results
are obtained with a low bandwidth when there is a highly
dependent short memory component (Model 1) or in the
presence of an additive noise (Model 3 with d > 0) and
with a larger bandwidth for models with low dependent
short memory component (Model 2) or in the white noise
case (Model 3 with d = 0). Especially harmful is the use

of a large bandwidth (m = 20) in Model 1, with very
low coverage frequencies.

o The performance of the local bootstrap depends on the
choice of the resampling width k,,. Reference [20]
suggested a value of k,, = 1 or 2. These values can
be too small when the short memory component is of
lesser importance and a larger k,, gives better results
in these cases. An excessively large k,, can however be
harmful in those cases where the estimator is subject to
a large bias as in Models 1 and 3 (d > 0) with a large
bandwidth. Thus a larger k£, should be chosen when the
bias component is low. In this situation a large bandwidth
should also be used. Then, as a rule of thumb, a larger k,,
can be chosen when the optimal bandwidth m* is large
and a low m™ should be accompanied by a small k,,. For
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TABLE 1V
LPE 95% CONFIDENCE INTERVALS COVERAGE FOR OPTIMAL BANDWIDTH
m*
AR(D) =0.9 AR() _ p=03 SPN
=0 d=04 =08 =0 d=04___ d=08 =0 4=04 =03
Asym
226 254 396 915 024 899 923 742 745
0971 0946 0762 0904 0908 0883 0904 0905 0928
RB
P 269 86 I8 919 924 90.7 925 73 738
0977 0952 0773 0908 0914 0887 0910 0909 0937
CBC 27.1 28.6 415 92.1 93 91 924 729 74
0978 0952 0774 0909 0914 0887 0911 0909 0937
BC 293 311 436 91.8 927 90.9 91.9 711 711
0979 0952 0774 0911 0916 0889 0911 0910 0939
BCa 292 309 436 91.9 92.6 91 919 712 712
0978 0951 0774 0911 0916 0888 0911 0910 0939
bt 352 386 513 943 953 93.7 9%4.9 76.8 715
1.109 1077 0871 1018 1025 0995 1019 1020 1.049
RLB(2)
P 72 206 35 865 36.7 832 887 66.7 673
0840 0826 0675 0785 0783 0757 0785 0764  0.802
CBC 17.7 21 349 83.9 86.2 82 87 66.4 66.8
0847 0835 0683 0793 079 0765 0793 0770 0809
BC 17.8 211 35.1 813 82.8 79.8 83.8 63 62
0838 0826 0680 0788 0787 0758 078 0766  0.804
BCa 17.8 211 35.1 813 82.8 79.8 83.8 63 62
0838 0826 0680 0788 0787 0758 078 0766  0.804
bt 311 329 474 925 92.8 90.3 9.5 733 739
1059 1040 0886 0975 0971 0939 0972 0943 1001
RLB(4)
P 195 37 393 or1 915 883 927 726 70.8
0919 0906 073 0854 0856 0827 0858 0842 0874
CBC 218 248 38 87.8 89.8 85.9 90.2 719 716
0922 0910 0738 0858 0862 0832 0863 0847 0878
BC 232 277 40.7 83.9 85.2 822 86.8 68 67.8
0910 0897 0735 0850 0853 0822 0852 0838 0864
BCa 23.1 277 40.7 838 852 82.1 86.8 68 67.9
0910 0897 073 0850 0853 0822 0852 0837 0864
bt 344 375 53.4 952 9% 93.6 95.5 782 778
1117 L1 0927 1.027 1030 0993 1029 1.009 1054
RLB(6)
P 199 745 305 927 946 orT 93 757 70.8
0949 0933 0755 0883 0884 0859 0883 0876 0903
CBC 253 28.1 40.2 88.3 90.6 86.4 90.5 732 719
0954 0938 0758 0888 0888  0.862 0888 0881 0907
BC 28.1 31 419 844 86.2 83 86.8 69.2 69.9
0938 0924 0752 0878 0878 0852 0876 0867  0.886
BCa 27.8 31 418 844 86.2 83 86.8 69.2 69.9
0938 0924 0752 0878 0879 0852 0876 0867  0.886
bt 315 36.7 55.1 9.5 96.8 95 9.5 79.3 76.4
1.107 1093 0910 1.021 1027 0993 1024 1.017 1055

SPN stands for the Signal Plus Noise process in Model 3. RB and RLB(k yy,) denote the residual bootstrap and the
residual local bootstrap with resampling width Ky, . In each cell the first number is coverage frequency in percentages
over 1000 simulations and the number below it is the average length of the interval. Asym, P, CBC, BC, BCa and b-t
denote the confidence intervals based on the asymptotic distribution, the basic percentile, the constant bias correcting

percentile, the bias corrected, the accelerated bias corrected and the bootstrap-t respectively.

the optimal bandwidths in table IV we found that a value
around k,, = 4 is adequate.

« The optimal bandwidth of [10] is obtained by minimizing
an asymptotic approximation of the mean squared error of
the LPE but need not give the best coverage frequencies.
This is the case in Models 1 and 3 where the bias com-
ponent is especially large and better coverage frequencies
are achieved with a lower bandwidth than the optimal m*
in Table IV.

e Overall the basic and local residual bootstrap-t give
the best performances. Table V displays the outcome
obtained with the asymptotic distribution and the RB and
RLB bootstrap-t with the values of m and the resampling
width k,, that give the best coverage frequencies. Note
that the optimal bandwidth m* does not generally corre-
spond to the best performance. The improvements of the
bootstrap over the asymptotic distribution are significant.
The local bootstrap gives similar coverages to the basic
residual bootstrap but with narrower intervals.

TABLE V
BEST RESULTS FOR COVERAGE FREQUENCIES WITH ASYMPTOTIC
DISTRIBUTION AND BOOTSTRAP-t

AR(D __ p=09 AR(D) _ p=03 SPN
d=0 d=04___ d=08 d=0 d=04___ d=03 d=0 d=04___ d=08

Asym

m 5 5 5 10 mr 10 20 10

cov 72.8 72.8 769 922 924 91 92.9 80.2 85
ampl 1.790 1.756 1.560 1.085 0.908 1.053 0.694 1.099 1717

RB

m 5 5 5 10 5 10 m* 5 5
cov 91.8 88.5 90 952 94.8 95.2 94.9 89.8 94.2
ampl 2.849 2.802 2481 1.285 2.806 1.246 1019 2818 2728
RLB

m 5 5 5 m* 5 m* 20 5 5
km 2 2 2 4 2 6 4 2 2
cov 89.4 87.3 89.1 95.2 94.4 95 95.1 89.6 933
ampl 2714 2.665 2383 1.027 2.668 0.993 0729 2686 2.609

SPN stands for the Signal Plus Noise process in Model 3. Asym, RB and RLB denote the confidence intervals based on

the asymptotic distribution, the residual bootstrap-¢ and the residual local bootstrap-¢ with resampling width K .

Although in the LPE context bootstrap is specially beneficial
with low sample sizes, it is also interesting to analyze how
its performance changes as sample size increases, in order
to learn about the asymptotic behaviour. Fig. 1 shows the
coverage frequencies, in percentages over 1000 replications, of
95% confidence intervals based on the asymptotic distribution
and the basic and local residual bootstrap-t in Model 1 with
sample sizes n = 64,128, 256,512 and 2048 and bandwidths
of the closest integer number larger than n%4, m = 6,7, 10,13
and 22 respectively. These bandwidths are lower than the
values given in the proposal by [10] -around 7, 12, 20, 31
and 38- and are adequate for purposes of comparison. The
resampling width is k,, = 2 for n = 64,128, k,, = 4 for
n = 256,512 and k,, = 8 for n = 2048. In all cases the
coverage approaches the nominal 95% confidence level as the
sample size increases, with the bootstrap coverages always
closer to the nominal confidence level. The lengths of the
intervals (not reported but available upon request) decrease
as expected with sample size and, as before, are larger for the
bootstrap proposals, indicating that confidence intervals wider
than the asymptotic intervals are required to approximate the
nominal confidence level.

IV. CONCLUSION

This paper shows the improvements of some residuals
based nonparametric bootstrap strategies over the asymptotic
distribution of the LPE in the construction of confidence
intervals with a small sample size. It is noteworthy the crucial
role played by the choice of the bandwidth. The coverage
frequencies and length of the confidence interval vary signif-
icantly with m and an appropriate m should be selected as a
first step. Whereas the performance of the RBB is quite poor,
the RB and the RLB bootstrap-t seems to perform well with
an appropriate selection of the resampling width. We have
proposed a rule of thumb for approximate selection of the
resampling width of the RLB linked to the optimal bandwidth
estimation of [10], a high optimal bandwidth requires a high
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Fig. 1. Coverage frequencies with different sample sizes

resampling width. The advantage of using the RLB over the
RB is the reduction of the length of the confidence intervals
without significantly affecting the coverage.

Our analysis has focused on the basic LPE, which is the
most popular method of estimation of the memory parameter.
There have been recently further refinements either in a linear
regression setup or in a nonlinear regression approach. For
example [39] proposed a bias reduced LPE by including
linearly extra regressors that account for the weak dependent
components. This extension can be applied to ARFIMA mod-
els such as Models 1 and 2 in our Monte Carlo, but not to
Model 3. In the perturbed long memory case, a somewhat
similar refinement has been considered by [38] and [36] who
proposed to include extra regressors to account for the added
noise. The resulting regression model is non linear in this case.
The bootstraps here proposed could be useful also in these
cases since they are nonparametric and based on residuals.

Further analysis in these setups is however required.
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