Predictions of Values in a Causticizing Process

An industrial system for the production of white liquor of a paper industry, Klabin Paraná Papéis, formed by ten reactors was modeled, simulated, and analyzed. The developed model considered possible water losses by evaporation and reaction, in addition to variations in volumetric flow of lime mud across the reactors due to composition variations. The model predictions agreed well with the process measurements at the plant and the results showed that the slaking reaction is nearly complete at the third causticizing reactor, while causticizing ends by the seventh reactor. Water loss due to slaking reaction and evaporation occurs more pronouncedly in the slaking reaction than in the final causticizing reactors; nevertheless, the lime mud flow remains nearly constant across the reactors.




References:
[1] BRACELPA - Associação Brasileira de Celulose e Papel (2009a).
Desempenho do setor e projeções. <www.bracelpa.org.br/bra/
estatisticas/pdf/booklet/booklet.pdf>, (acessed 10.02.10).
[2] BRACELPA - Associação Brasileira de Celulose e Papel (2009b).
Relatório Anual 2008/2009. <www.bracelpa.org.br/bra/
estatisticas/pdf/rel2008.pdf>, (acessed 10.02.10).
[3] Soares, N. S.; Silva, M. L.; Lima, J. E.. (2007), A função de produção da
indústria brasileira de celulose, em 2004. Rev. Árvore, 31 (3), 495-502.
[4] Medeiros, R. G.; Silva Jr., F. G.; Báo, S. N.; Hanada, R.; Ferreira Filho,
E. X. (2007), Application of Xylanases from Amazon Forest Fungal
Species in Blenching of Eucalyptus Kraft Pulps. Braz. Arch. Biol.
Techn., 50 (2), 231-238.
[5] Vilkari, L.; Kantelinen, A.; Linko, M. (1994), Xylanases in blanching:
from an idea to industry. FEMS Microbiol. Rev., 13, 335-355.
[6] Gonçalves, E. C.; Silva, C. M.; Alves, L. J. L.; Gomide, J. L.; Carneiro,
C. J. G. (2008), Sodium metaborate autocausticizing for eucalyptus
kraft-antraquinone pulp production. O Papel, 4, 42-50.
[7] Zeng, L., van Heiningen, A. R. P., A Mathematic Model for Direct
Causticization of Na2CO3 with TiO2 in a Semi-batch Reactor. Can. J.
Chem. Eng., 80, 948-953, 2002.
[8] Andrade, A. A.; Sartori, C. R. F.; Costa, V. L.; Freitas, M.; Rothen, T.;
d´Angelo (2009), Implementation of advanced control and optimization
in the causticizing process. O Papel, 70, 11, 66-77.
[9] Lopes, R.; Fleet, V. R.; Figueiredo, D. (2008), Multivariable process
control applications for the pulp industry. O Papel, 69 (11), 75-86. [10] Silva, F. A.; Restrepo, A.; Rodrigues, L. A.; Gedraite, R. (2008),
Variability reduction and efficiency increase in lime kilns using
advanced process control. O Papel, 69 (12), 75-85.
[11] Malberg, B., Edwards, L. (2007), Dynamic modeling of pressurized
peroxide stages with application to full bleach plant simulation. Tappi J.,
6 (2), 9-17.
[12] Barber, V. A., Scott, G. M. (2007), Dynamic modeling of a paper
machine, part I: programming and software development. Tappi J., 6 (1),
11-17.
[13] Aguiar, H. C.; Maciel Filho, R. (2001), Neuronal network and hybrid
model: a discussion about different modeling techniques to predict
pulping degree with industrial data. Chem. Eng. Sci., 56, 565- 570.
[14] Costa, A. O. S.; Biscaia Jr., E. C.; Lima, E. L. (2004), Mathematical
description of the kraft recovery boiler furnace. Comput. Chem. Eng.,
28, 633-641.
[15] Sethuraman, J.; Krishnagopalan, J.; Krishnagopalan, G. (1995), Kinetic
model for the causticizing reaction. Tappi J., 78 (1), 115-120.
[16] Uronen, P.; Aurasmaa, H. (1979), Modelling and simulation of
causticization plant and lime kiln. Pulp Pap-Canada, 80 (6), 162-165.
[17] Andrade, A. A.; Sartori, C. R. F.; Costa, V. L.; Freitas, M.; Rothen, T.;
d´Angelo (2009), Implementation of advanced control and optimization
in the causticizing process. O Papel, 70, 11, 66-77.
[18] Swanda, A. P.; Seborg, D. E.; Holman, K. L.; Sweerus, N. (1997),
Dynamic models of the causticizing process. Tappi J., 80 (12), 123-134.
[19] Holman, K. L.; Warrick, R. P.; Carlson, K. R. (1991), Recausticizing
kinetics with mill liquor and lime. AIChE Forest Products Symposium
Proceedings, AIChE, NewYork, 23-31.
[20] Andreola, R.; Vieira, O.; Santos, O. A. A.; Jorge, L. M. M. (2007),
Effect of Water Losses by Evaporation and Chemical Reaction in an
Industrial Slaker Reactor. Braz. Arch. Biol. Techn., 50 (2), 339-347.
[21] Andreola, R. (2001), Modeling, Simulation and Analysis of Klabin
Paraná Papéis Causticizing Reactor System. M.S. Thesis (in
Portuguese), State University of Maringá, Maringá, Brazil.
[22] Swanda, A. P. (1994), Process modeling and control system evaluation
for the pulp and paper recausticizing process. M.S. Thesis, University of
California, USA.
[23] Kahaner, D. Moler, C. Nash, S. (1989), Numerical methods and
software. Prentice Hall Series in Computational Mathematics, New
Jersey.
[24] Lydersen, L. A. (1979), Fluid flow and heat transfer. John Wiley and
Sons, New York.
[25] Hypponen, O. and Luuko A. (1984), The residence time distributions of
liquor and lime mud flows in the recausticizing process. Tappi Journal,
67:7, 46-48.