Observer Based Control of a Class of Nonlinear Fractional Order Systems using LMI

Design of an observer based controller for a class of fractional order systems has been done. Fractional order mathematics is used to express the system and the proposed observer. Fractional order Lyapunov theorem is used to derive the closed-loop asymptotic stability. The gains of the observer and observer based controller are derived systematically using the linear matrix inequality approach. Finally, the simulation results demonstrate validity and effectiveness of the proposed observer based controller.




References:
[1] C. A. Monje , Y. Q. Chen, B.M. Vinagre, D. Xue, and V. Feliu,
Fractional-order Systems and Controls: Fundamentals and
Applications, New York, Springer, 2010.
[2] A. A. Kilbas, H. M. Srivastava and J. J.Trujillo , Theory and
applications of fractional differential equations, Amsterdam, The
Netherlands: Elsevier, 2006.
[3] R. Hilfer , Application of fractional calculus in physics, New Jersey:
World Scientific, 2001.
[4] S. Dadras, and H.R.Momeni, "Control of a fractional-order economical
system via sliding mode, " Physica A, Vol.389, No. 12, pp. 2434-2442,
2010.
[5] I. Podlubny,"Fractional-order systems and PIλD╬╝ controller,"IEEE
Trans. Automat. Control, Vol.44, No. 1, pp. 208-214, 1999.
[6] D. Matignon, "Stability results for fractional differential equations with
applications to control processing," in: Computational Engineering in
Systems Applications, Lille, France, IMACS, IEEE-SMC, vol. 2,
pp.963-968, July, 1996.
[7] I. N-doye, M. Zasadzinski, M. Darouach and N. E. Radhy, "Observer-
Based Control for Fractional-Order Continuous-time Systems," Joint
48th IEEE Conference on Decision and Control and 28th Chinese
Control Conference, China, December 2009, pp.1932-1937.
[8] J. G. Lu, Nonlinear observer design to synchronize fractional-order
chaotic systems via a scalar transmitted signal, Physica A. Vol.359, pp.
107-118, 2006.
[9] L. Xinjie, L. Jie, D. Pengzhen, X. Lifen, Observer Designing for
Generalized Synchronization of Fractional Order Hyper-chaotic Lu
System, in 2009 proc of Chinese Control and Decision Conference. pp.
426-431.
[10] M. S. Tavazoei, and M. Haeri, Synchronization of chaotic fractionalorder
systems via active sliding mode controller, Physica A. Vol. 387,
pp.57-70, 2008.
[11] M. M. Asheghan, M. T. Hamidi Beheshti, M. S. Tavazoei, Robust
synchronization of perturbed Chen-s fractional-order chaotic systems,
Commun Nonlinear Sci Numer Simulat. Vol.16, pp.1044-1051, 2011.
[12] Y. Li, Y. Q. Chen, I. Podlubny, Mittag-Leffler stability of fractional
order nonlinear dynamic systems, Automatica. Vol.45, pp.1965-1969,
2006.
[13] J.C. Trigeassou, N.Maamri, J.Sabatier, A.Oustaloup, A Lyapunov
approach to the stability of fractional differential equations, Signal
Process. Vol.91, pp.437-445, 2011.
[14] I. Podlubny, Fractional differential equations. Academic Press, New
York, 1999.
[15] M.O. Efe, Fractional Fuzzy Adaptive Sliding-Mode Control of a 2-DOF
Direct-Drive Robot Arm, IEEE T SYST MAN CY B. Vol.38, pp.1561-
1570, 2008.
[16] S. Boyd, L.E. Ghaoui, E. Feron, V. Balakrishnan, Linear Matrix
Inequalities in System and Control Theory, Society for Industrial and
Applied Mathematics (SIAM), Philadelphia, 1994.
[17] M. Pourgholi, V. Johari Majd, A Nonlinear Adaptive Resilient Observer
Design for a Class of Lipschitz Systems Using LMI, Circuits Syst Signal
Process, Vol.30, pp.1401-1415, 2011.
[18] Y. Li, Y. Q. Chen, I. Podlubny, Stability of fractional-order nonlinear
dynamic systems: Lyapunov direct method and generalized
Mittag_Leffler stability, Comput Math APPL. Vol.59, pp.1810-1821,
2010.
[19] D. Valério, "Ninteger v. 2.3, Fractional control toolbox for MatLab,
Fractional derivatives and applications," Universidadetecnica de
lisboainstituto superior tecnico, 2005.