Mammogram Image Size Reduction Using 16-8 bit Conversion Technique

Two algorithms are proposed to reduce the storage requirements for mammogram images. The input image goes through a shrinking process that converts the 16-bit images to 8-bits by using pixel-depth conversion algorithm followed by enhancement process. The performance of the algorithms is evaluated objectively and subjectively. A 50% reduction in size is obtained with no loss of significant data at the breast region.




References:
[1] A. Aldroubi, M. Unser, and M. Eden" Cardinal spline filters: Stability
and convergence to the ideal sinc interpolation", Signal processing, Vol
28, pp. 127-138, 1992.
[2] D. Brzakovic, X. M. Luo, and P. Brzakovic, "An Approach to
Automated Detection of Tumors in Mammograms," IEEE Transactions
on Medical Imaging, vol. 9, no. 3, pp. 233-241, 1990
[3] D.B. Kopanes, "Breast Imaging"2nd edition. Philadelphia, PA:
Lippincott-Raven, 1998.
[4] G. R. Kuduvalli and R. M. Rangayyan, "Performance analysis of
reversible image compression techniques for high-resolution digital
teleradiology," IEEE Trans. Med. Imag., vol. 11, pp. 430-445, Sept.
1992.
[5] G. S. Maitz, T. S. Chang, J. H. Sumkin, P. W. Wintz, C. M. Johns, M.
Ganott, B. L. Holbert, C. M. Hakim, K. M. Harris, D. Gur, and J. M.
Herron, "Preliminary clinical evaluation of high-resolution
telemammography system," Invest. Radiol., vol. 32, pp. 236-240, Apr.
1997.
[6] H.-P Chan, L.T. Niklason, D.M.Ikeda, K.L. Lam, and D. D. Adler.
"Digitizing requirements in mammography: Effects on computer aided
detection of micro-calcifications", Med. Phys, Vol.21, pp.1203-1211,
July 1994.
[7] J. A. Paker, R. V. Kenyon, and D.E. Troxel," Comparison of
interpolating methods for image resampling", IEEE Transaction
Medical Images. Vol. M1-2, pp 31-39,1983.
[8] K. Coakley, F. Quintarelli, T. van Doorn, C. Hirst, "Classification of
Equivocal Mammograms through Digital Analysis", the breast, vol. 3,
pp. 222-226, 1994.
[9] K. Wakabayashi "Evaluation of the effective information preservation
method for binary image reduction", System and computers in Japan,
32(7), pp.1-11, 2001.
[10] Monica Penedo, William Pearlman, Pablo Tahoces, Miguel Souto, and
Juan Vidal "Region - Based Wavelet Coding Methods for Digital
Mammograhy", IEEE Trans. On Medical Imaging, Vol:22, No:19,
PP:1288-1295, Oct-2003.
[11] M. Comer, S. Liu, and E. J. Delp, "Statistical Segmentation of
Mammograms," Proceedings of the 3rd International Workshop on
Digital Mammography, Chicago, pp. 475-478, 1996.
[12] M. L. Giger, F.-F. Yin, K. Doi, C. E. Metz, R. A. Schmidt, and C. J.
Vyborny, "Investigation of Methods for the Computerized Detection
and Analysis of Mammographic Masses," Proceedings of SPIE,
Washington, pp. 183-184, 1990.
[13] M. Unser, A. Aldroubi, and M. Eden, "Enlargement or Reduction of
Digital Images with Minimum Loss of Information", IEEE transaction
on image processing, 4(3), pp.247-258, 1995.
[14] M. Unser, A. Aldroubi, and E. Eden "Fast B-Spline transforms for continous image representation and interpolation" IEEE Trans. Pattern
Anal. Machine Intell. Vol 13, pp. 277-285, 1991.
[15] O.L. Mangasarian, "Breast cancer diagnosis and prognosis via linear
programming", Operations Research, vol. 43, No. 4, pp. 570-577, 1995.
[16] R.E. Bird, T.W Wallace, and B.C. Yankaskas, "Analysis of cancer
missed at screening mammography" Radiology, Vol.184, pp. 613-617,
Sept. 1992.
[17] S. K. Park and R. A. Showengerdt," Image reconstruction by
parametric convolution" Computer Vision Graphics, Image processing,
Vol 20, pp.258-272, 1983.
[18] R. N. Strickland and H. I. Hahn, "Wavelet Transforms for Detecting
Microcalcifications in Mammograms," IEEE Transactions on Medical
Imaging, vol. 15, no. 2, pp. 218-229, 1996.
[19] S. Liu and E. J. Delp, "multi-resolution Detection of Stellate Lesions
in Mammograms", Proceedings of the IEEE International Conference
on Image Processing, Santa Barbara, pp. 109-112, 1997.
[20] S. Parker et al, "Cancer Statistics", Cancer Journal for Clinicians, vol.
47, pp. 5-27, 1997.
[21] V. Rasche, R. Proksa, R. Sinkus, P.Bornet and H. Eggers, "Resampling
of data between arbitrary grids using convolution
interpolation", IEEE transaction on medical imaging, 18(5), pp.385-
392, 1999.
[22] Mercury computer system, Inc. "Amira 4.0" http://www.tgs.com/
[23] Tomasz Arod'z, Marcin Kurdziel, Tadeusz Popiela, Erik O. D. Sevre,
David A. Yuen, "A 3D Visualization System for Computer-Aided
Mammogram Analysis", 2004.
[24] Tomasz Arod'z, Marcin Kurdziel, Tadeusz J. Popiela, Erik O.D.
Sevre, David A. Yuen, "Detection of clustered microcalcifications in
small field digital mammography", 2006.
[25] Zhou Wang, Alan Conrad Bovik, Hamid Rahim Sheikh, and Eero
Simoncelli," Image Quality Assessment: From Error Visibility to
Structural Similarity", IEEE Trnas on Image Processing, Vol.13 , No.
4,pp. 600-612, 2004.
[26] Zhou Wang, Alan Conrad Bovik, Hamid Rahim Sheikh, and Eero
Simoncelli, Matlab source file, http//www.cns.nyu.edu/~lcv/ssim/.
[27] J. A. Parken, R.V. Kenyon, and D.E. Troxel, "Comparison of
interpolating methods for image resampling", IEEE Trans Medical
Imaging, Vol.2, pp. 31-39, 1983.
[28] W. K. Pratt," Digital image processing", Johm Willey &sons inc,
1991.
[29] Cheng-Soon Chuah, Jin-Jang Leou, An adaptive image interpolation
algorithm for image/video processing, Pattern Recognition 34. pp:
2383-2393, 2001.
[30] H.S. Hou, H.C. Andrews, "Cubic splines for image interpolation and
digital altering", IEEE Trans. Acoust. Speech Signal Process. ASSP-26
(6). PP: 508-517, 1978.
[31] R.R. Schultz, R.L. Stevenson, A Bayesian approach to image
expansion for improved definition, IEEE Trans. Image Process. 3 (3).
PP: 233-242, 1994.
[32] R.Y. Tsai, T.S. Huang, "Multiframe image restoration and
registration", in: R.Y. Tsai, T.S. Huang (Eds.), Advance in Computer
Vision and Image Processing, Vol. 1, JAI Press, Greenwich, CT, pp.
317-339, 1984.
[33] A.J. Patti, M.I. Sezan, A.M. Tekalp, "High-resolution image
reconstruction from a low-resolution image sequence in the presence of
time-varying blur", Proceedings of the IEEE International Conference
on Image Processing, Austin, TX, pp. 343-347, 1994.
[34] R.G.Keys, "Cubic convolution interpolation for digital image
processing", IEEE Trans. Acoustics Speech and Signal Processing,
Vol.29, pp.1153-1160, 1981.