Integration of Microarray Data into a Genome-Scale Metabolic Model to Study Flux Distribution after Gene Knockout

Prediction of perturbations after genetic manipulation
(especially gene knockout) is one of the important challenges in
systems biology. In this paper, a new algorithm is introduced that
integrates microarray data into the metabolic model. The algorithm
was used to study the change in the cell phenotype after knockout of
Gss gene in Escherichia coli BW25113. Algorithm implementation
indicated that gene deletion resulted in more activation of the
metabolic network. Growth yield was more and less regulating gene
were identified for mutant in comparison with the wild-type strain.




References:
[1] K. Raman and N. Chandra, “Flux balance analysis of biological systems:
Applications and challenges,” Briefings in Bioinformatics, vol. 10, no. 4,
pp. 435-449, 2009.
[2] F. Llaneras and J. Picó, “Stoichiometric modeling of cell metabolism,”
Journal of Bioscience and Bioengineering, vol. 105, no. 1, pp. 1-11,
2008.
[3] J. S. Edwards, M. Covert, and B. Palsson, “Metabolic modeling of
microbes: The flux-balance approach,” Environmental Microbiology,
vol. 4, no. 3, pp. 133-140, 2002.
[4] A. M. Feist and B. O. Palsson, “The biomass objective function,”
Current Opinion in Microbiology, vol. 13, no. 3, pp. 344-349, 2010.
[5] K. J. Kauffman, P. Prakash, and J. S. Edwards, “Advances in flux
balance analysis,” Current Opinion in Biotechnology, vol. 14, no. 5, pp.
491-496, 2003.
[6] A. Varma and B. O. Palsson, “Metabolic flux balancing: Basic concepts,
scientific and practical use,” Nature Biotechnology, vol. 12, no. 10, pp.
994-998, 1994.
[7] J. S. Edwards and B. O. Palsson, “The Escherichia coli MG1655 in
silico metabolic genotype: Its definition, characteristics, and
capabilities,” Proceedings of the National Academy of Sciences of the
United States of America, vol. 97, no. 10, pp. 5528-5533, 2000.
[8] J. S. Edwards, R. U. Ibarra, and B. O. Palsson, “In silico predictions of
Escherichia coli metabolic capabilities are consistent with experimental
data,” Nature Biotechnology, vol. 19, no. 2, pp. 125-130, 2001.
[9] I. Family, J. Forster, J. Nielsen, and B. O. Palsson, “Saccharomyces
cerevisiae phenotypes can be predicted by using constraint-based
analysis of a genome-scale reconstructed metabolic network,”
Proceedings of the National Academy of Sciences of the United States of
America, vol. 100, no. 23, pp. 13134-13139, 2003.
[10] J. Forster, I. Famili, B. O. Palsson, and J. Nielsen, “Large-scale
evaluation of in silico gene deletions in Saccharomyces cerevisiae,”
OMICS A Journal of Integrative Biology, vol. 7, no. 2, pp. 193-202,
2003.
[11] R. U. Ibarra, J. S. Edwards, and B. O. Palsson, “Escherichia coli K-12
undergoes adaptive evolution to achieve in silico predicted optimal
growth,” Nature, vol. 420, no. 6912, pp. 186-189, 2002.
[12] K. Kiviharju, U. Moilanen, M. Leisola, and T. Eerikäinen, “A chemostat
study of Streptomyces peucetius var. caesius N47,” Applied
Microbiology and Biotechnology, vol. 73, no. 6, pp. 1267-1274, 2007.
[13] A. M. Feist, J. C. M. Scholten, B. Ø. Palsson, F. J. Brockman, and T.
Ideker, “Modeling methanogenesis with a genome-scale metabolic
reconstruction of Methanosarcina barkeri,” Molecular Systems Biology,
vol. 2, pp. 2006.
[14] V. Satish Kumar, J. G. Ferry, and C. D. Maranas, “Metabolic
reconstruction of the archaeon methanogen Methanosarcina
Acetivorans,” BMC Systems Biology, vol. 5, pp. 2011.
[15] O. Gonzalez, T. Oberwinkler, L. Mansueto, F. Pfeiffer, E. Mendoza, R.
Zimmer, and D. Oesterhelt, “Characterization of growth and metabolism
of the haloalkaliphile Natronomonas pharaonis,” PLoS Computational
Biology, vol. 6, no. 6, pp. 1-10, 2010.
[16] C. B. Milne, P. J. Kim, J. A. Eddy, and N. D. Price, “Accomplishments
in genome-scale in silico modeling for industrial and medical
biotechnology,” Biotechnology Journal, vol. 4, no. 12, pp. 1653-1670,
2009.
[17] J. L. Hjersted, M. A. Henson, and R. Mahadevan, “Genome-scale
analysis of Saccharomyces cerevisiae metabolism and ethanol
production in fed-batch culture,” Biotechnology and Bioengineering,
vol. 97, no. 5, pp. 1190-1204, 2007.
[18] Q. Zhao and H. Kurata, “Genetic modification of flux for flux prediction
of mutants,” Bioinformatics, vol. 25, no. 13, pp. 1702-1708, 2009.
[19] D. Segre, D. Vitkup, and G. M. Church, “Analysis of optimality in
natural and perturbed metabolic networks,” Proceedings of the National
Academy of Sciences of the United States of America, vol. 99, no. 23, pp.
15112-15117, 2002.
[20] T. Shlomi, O. Berkman, and E. Ruppin, “Regulatory on/off
minimization of metabolic flux changes after genetic perturbations,”
Proceedings of the National Academy of Sciences of the United States of
America, vol. 102, no. 21, pp. 7695-7700, 2005.
[21] M. J. Herrgard, S. S. Fong, and B. O. Palsson, “Identification of
genome-scale metabolic network models using experimentally measured
flux profiles,” PLoS Computational Biology, vol. 2, no. 7, pp. 0676-
0686, 2006.
[22] J. Ihmels, R. Levy, and N. Barkai, “Principles of transcriptional control
in the metabolic network of Saccharomyces cerevisiae,” Nature
Biotechnology, vol. 22, no. 1, pp. 86-92, 2004.
[23] J. D. Orth, T. M. Conrad, J. Na, J. A. Lerman, H. Nam, A. M. Feist and
B. O. Palsson, “A comprehensive genome-scale reconstruction of
Escherichia coli metabolism--2011,” Mol Syst Biol, vol. 7, pp. 535,
2011.
[24] A. R. Joyce, J. L. Reed, A. White, R. Edwards, A. Osterman, T. Baba,
H. Mori, S. A. Lesely, B. Ø. Palsson, and S. Agarwalla, “Experimental
and computational assessment of conditionally essential genes in
Escherichia coli,” Journal of Bacteriology, vol. 188, no. 23, pp. 8259-
8271, 2006.
[25] S. A. Nizam and K. Shimizu, “Effects of arcA and arcB genes knockout
on the metabolism in Escherichia coli under anaerobic and microaerobic
conditions,” Biochemical Engineering Journal, vol. 42, no. 3, pp. 229-
236, 2008.
[26] M. K. Chattopadhyay, W. Chen, and H. Tabor, “Escherichia coli
glutathionylspermidine synthetase/amidase: phylogeny and effect on
regulation of gene expression,” FEMS Microbiol Lett, vol. 338, no. 2,
pp. 132-40, 2013.