
International Journal of Biological, Life and Agricultural Sciences

ISSN: 2415-6612

Vol:8, No:11, 2014

1302

 

 

 
Abstract—Prediction of perturbations after genetic manipulation 

(especially gene knockout) is one of the important challenges in 
systems biology. In this paper, a new algorithm is introduced that 
integrates microarray data into the metabolic model. The algorithm 
was used to study the change in the cell phenotype after knockout of 
Gss gene in Escherichia coli BW25113. Algorithm implementation 
indicated that gene deletion resulted in more activation of the 
metabolic network. Growth yield was more and less regulating gene 
were identified for mutant in comparison with the wild-type strain. 
 

Keywords—Metabolic network, gene knockout, flux balance 
analysis, microarray data, integration. 

I. INTRODUCTION 

LUX balance analysis (FBA) is a mathematical approach 
for analyzing the flow of metabolites through a metabolic 

network. This approach selects an objective function and uses 
linear programming (LP) to find reactions flux in an 
underdetermined stoichiometric model [1]-[3]. FBA applies 
various optimization criteria such as maximization of growth 
rate, minimization of ATP production and maximization of 
product formation [4]-[6]. This approach has been 
successfully used to predict different capabilities of cells for 
example growth, uptake rates, by-product secretion and 
growing after genetic manipulations [7]-[11]. This approach 
has been successfully used to predict the effect of different 
parameters such as temperature, aeration rate and pH [12]-[14] 
on the metabolism of cells [2], [15], [16]. 

Also, investigation of intracellular perturbation and genetic 
manipulation effect on cellular behavior has attracted 
considerable attention in recent years [3], [5], [17], [18]. Gene 
deletion analysis is one of the important issues to study mutant 
phenotypes which could result in more knowledge of 
metabolism and metabolic engineering strategies for targeted 
improvement. Gene deletion leads to zero flux for associated 
reactions and hence, a gene deletion often results in the 
reduction of the steady-state solution space unless isozymes or 
equivalent reaction sets present in the network. 

Four important approaches FBA, MOMA, lMOMA, and 
ROOM have been presented to predict the effects of gene 
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deletions on overall network function [19]-[21]. In FBA, LP is 
carried out the same as before, but in the reduced mutant 
solution space. In fact, this approach assumes that 
microorganism optimizes the growth after gene deletion, and 
the knockout solution is an optimal point in the new feasible 
solution space. In MOMA, it is supposed that the mutant 
solution in the new solution space is close to the optimal 
solution of the wild type. Based on this approach, the mutant 
is not seeking to optimize its performance against FBA; 
however, it tries to have the least change and perturbation in 
the flux distribution compared with wild type. Hence, by using 
a second order objective function and solving the quadratic 
programming (QP), the nearest point to the optimal solution of 
wild type in the new solution space is found. Due to the high 
computations in MOMA, lMOMA is proposed which uses 
linear norm instead of the Euclidean norm in objective 
function [19], [21]. ROOM is another approach to study the 
cell metabolism after gene deletion which converts LP model 
to a mixed integer linear programming (MILP) model. In this 
approach, the aim is the minimization of the total number of 
significant flux changes from the wild-type flux distribution. 
The approach has been developed using the idea of Ihmels et 
al. [22]. According to this idea, metabolic flow in a branch 
commonly passes through a specific path. 

Studies indicate that FBA and ROOM results are very close 
together especially for prediction of gene lethality. In fact, 
ROOM is indirectly looking for the optimal growth as well as 
FBA. Furthermore, Shlomi et al. shows that MOMA is more 
appropriate for predicting transient growth rates in response to 
genetic perturbations while ROOM and FBA better predict the 
final growth rate achieved after the adaptation process [20]. 
There are some studies on gene deletion analysis using various 
approaches especially FBA and MOMA. For example, 
Boghigian et al. [3] simulate the 6-Deoxyerythronolide B 
production in three common heterologous hosts (E. coli, B. 
subtilis, and S. cerevisiae) under a variety of carbon-source 
and medium compositions. They used MOMA to identify 
single and double gene knockouts that resulted in increased 6-
Deoxyerythronolide B production while maintaining cellular 
growth. They predict several single and multiple gene 
knockout mutants to improve growth and 6-
Deoxyerythronolide B production. In another work, Hjersted 
et al. [17] investigated the effect of gene deletion or insertion 
for growth and ethanol production in the fed-batch culture of 
S. cerevisiae using FBA. 

Previous methods are able to predict gene essentially while 
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their proposed flux distributions may be far from the reality. In 
this paper, microarray data before and after gene knockout 
were integrated into a metabolic model using a new algorithm 
to study the change in flux distribution. The new algorithm is 
called transcriptionally regulated flux balance analysis 
(trFBA) and is based on the hypothesis that pattern of genes 
expression in the growth phase is constant, although it is 
possible to change the intensity of the gene expression. trFBA 
extracts a pattern of reaction usage in the growth phase based 
on a gene expression profile and constrains the upper bounds 
of reactions. Expression levels are converted to upper bounds 
by defining the pattern coefficient (PC). Integration of 
microarray data for E. coli BW25113gss+ and gss- into a 
metabolic model determined change in flux distribution after 
gene knockout. 

II. MATERIAL AND METHODS 

A. Genome-Scale Model and in Silico Simulation 

The genome-scale stoichiometric model used in this study 
for Escherichia coli includes 1805 metabolites, 2583 
reactions, 1367 genes and three compartments (periplasm, 
cytoplasm and extracellular) [23]. The model was modified to 
consider genetic differences between MG1655 and BW25113. 
Since the araBAD, rhaBAD, and lacZ genes are absent from 
the BW25113 strain, the associated metabolic reactions were 
removed [24]. 

Specific growth and glucose uptake rates were determined 
for E. coli BW25113 growing in aerobic glucose minimal 
medium cultured in a continuous system [25]. 

In all in silico experiments, biomass formation was the 
objective function to be maximized. Calculations were made 
in MATLAB software using the COBRA toolbox. The GLPK 
(GNU linear programming kit) package was used to solve LP 
problems. 

B. Method 

Stoichiometric metabolic models are constructed using a 
metabolic network and comprise a set of algebraic equations 
which are usually underdetermined. 

Raw microarray data from Chattopadhyay et al.[26] 
(GSE30679) with three replicates for E. coli BW25113 gss+ 
and gss- were used. The mRNA level was measured in the log-
phase of a minimal medium that includes glucose as the sole 
carbon source. Expression values were determined using the 
MAS5 normalization algorithm. Average expression of three 
replicates was considered to be the expression level of each 
gene. 

The proposed algorithm assigns a value to each reaction 
based on gene expression. For each reaction that is catalyzed 
by only one gene, the expression value for the gene whose 
product catalyzes a reaction is set as the reaction value. For 
each reaction catalyzed by a complex requiring more than one 
gene, the reaction value is set to the minimum of expression of 
requiring genes. Reaction expression vector demonstrates a 
pattern of reaction usage in metabolism based on expression 
data. 

After transcription, it is possible to have post-transcriptional 
and post-translational regulation in a cell; thus, the upper 
bounds instead of the fluxes are limited in the algorithm using 
reaction expression data. Expression data were converted to 
the upper bound of reactions using a coefficient named pattern 
coefficient (PC). The optimal value of PC was determined 
using experimental data. If the expression of none of the genes 
associated with a reaction is determined, the upper bound of 
1000 is considered for that reaction; if the reaction is 
reversible, a lower bound of -1000 is considered for it. In the 
event that more than one reaction is supported by a gene, these 
reactions are linked to preventing the use of the expression 
value of a gene multiple times. 

III. RESULTS AND DISCUSSION 

A. Comparison of Reaction Expressions 
Fig. 1 shows the distribution of reaction expressions values 

determined for the 3901 reactions using microarray data of 
wild-type and ∆gss mutant. 

It can be seen that reactions expression of wild-type cells 
tends to lower values. 1280 reactions have values lower than 
200 while there are 1444 reactions for wild type. Maximum 
values of reaction expression were recorded for reactions 
DBTS (dethiobiotin synthase) from the cofactor and prosthetic 
group biosynthesis pathway for both strains. Fig. 1 indicates 
that gss gene knockout commonly resulted in over-expression 
of metabolic genes. In fact, it can be concluded that genetic 
perturbations motivated the metabolic genes and further 
activated the metabolism. 

B. Optimal Values of PC and Growth Prediction 
To simulate growth using FBA and trFBA, the glucose 

uptake rate was determined (1.45 (mmol gDCW-1h-1) and the 
growth rate () was optimized by running the model. 
Implementation of trFBA requires that PC be specified. PC 
was manually changed to achieve the experimental growth 
rate (0.093 h-1) for wild-type strain by running the model. The 
optimal value of 0.0048 was calculated for PC to convert 
expression values to the upper bound of reactions. 

Growth rate predicted by FBA was 0.13 h-1. It can be seen 
that FBA predicted more growth rate compared with 
experimental data. This arises from the fact that FBA used the 
stoichiometric data without limitation for intracellular 
reactions. 

The optimal value of PC calculated for wild-type strain was 
used to determine the growth rate of ∆gss strain. The predicted 
growth rate was equal to 0.125 h-1that was near growth rate 
predicted by FBA. While predicted growth yield for wild-type 
strain was 0.064 g/g, the algorithm predicted that gss gene 
knockout increase it to 0.86 g/g. in fact, the algorithm based 
on the microarray data demonstrates that intracellular 
limitations were decreased when deletion of the gsshas 
occurred. 

C. Change in Flux Distribution 

In addition to different growth yield, algorithm predicted 
that metabolism usage of wild-type and mutant strains are 
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different. To evaluate the changes in flux distribution, the 
number of activated and inactivated reactions was compared 
for two strains and the number of reactions that were active for 

∆gss, but an increase or decrease in their activity was 
observed, were presented in Table I. 

 

 

 

Fig. 1 Distribution of reaction expression values for the reactions in wild-type and mutant strains 
 

TABLE I 
NUMBER OF ACTIVATED AND INACTIVATED REACTIONS AND NUMBER OF 

REACTIONS THAT WERE ACTIVE FOR ∆GSS MUTANT AND SAW AN INCREASE 

OR DECREASE IN THEIR ACTIVITY 

Strain Yx/s (g/g) 
Number of Reactions 

Activated Increased Inactivated Reduced

WT 0.356 
20 172 24 6 

∆gss 0.478 

 
Although the glucose uptake rate was identical, the growth 

yield was very different. Activated reactions were less than 
inactivated reactions while reactions within creased fluxes 
were more than reactions with reduced fluxes. Flux 
distribution in the mutant was changed, and most of the 
reactions were activated. 
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Fig. 2 Metabolic pathways of regulating genes for wild-type and 
mutant strains 
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D. Metabolic Pathways of Bottleneck Genes 

The genes for which all expressions were used are called 
bottleneck or regulating genes. These genes limited activity of 
one or more reactions. 13 and 7 regulating genes were 
identified for wild type and ∆gss strains, respectively. The 
fewer number of regulating genes confirms lower intracellular 
limitations of ∆gss strain. Regulating genes belong to different 
metabolic pathways. Fig. 2 shows the metabolic pathways of 
regulating genes for two wild-type and ∆gss strains. It can be 
seen that various metabolic pathways were limited. Limitation 
of pathways in wild-type is more than mutant strain. The most 
limited pathway was oxidative phosphorylation. In fact, the 
algorithm shows that energy production was the most 
important limitation for growth.  

IV. CONCLUSION 

While a gene was deleted, integration of microarray data 
into the metabolic model using a new algorithm predicted that 
growth yield of wild type was lower than a ∆gss mutant. 

In addition, trFBA predicted that bottleneck genes of wild-
type strain were more in amount, and its metabolism is more 
limited. Therefore, it can be concluded that gene knockout 
motivated the cell’s metabolism to be more activated. 
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