Identification of High Stress and Strain Regions in Proximal Femur during Single-Leg Stance and Sideways Fall Using QCT-Based Finite Element Model

Studying stress and strain trends in the femur and recognizing femur failure mechanism is very important for preventing hip fracture in the elderly. The aim of this study was to identify high stress and strain regions in the femur during normal walking and falling to find the mechanical behavior and failure mechanism of the femur. We developed a finite element model of the femur from the subject’s quantitative computed tomography (QCT) image and used it to identify potentially high stress and strain regions during the single-leg stance and the sideways fall. It was found that fracture may initiate from the superior region of femoral neck and propagate to the inferior region during a high impact force such as sideways fall. The results of this study showed that the femur bone is more sensitive to strain than stress which indicates the effect of strain, in addition to effect of stress, should be considered for failure analysis.




References:
[1] N. M. Resnick, and S. L. Greenspan, “‘Senile’ osteoporosis
reconsidered,” JAMA, vol. 261, no. 7, pp. 1025–1029,1989.
[2] M. Mirzaei, M. Keshavarzian, and V. Naeini, “Analysis of strength and
failure pattern of human proximal femur using quantitative computed
tomography (QCT)-based finite element method,” Bone, vol. 64, pp.
108–114, 2014.
[3] J. H. Keyak, S. A. Rossi, K. A. Jones, C. M. Les, and H. B. Skinner,
“Prediction of fracture location in the proximal femur using finite
element models,” Med. Eng. Phys., vol. 23, no. 9, pp. 657–664, 2001.
[4] M. Bessho, I. Ohnishi, T. Matsumoto, S. Ohashi, J. Matsuyama, K.
Tobita, M. Kaneko, and K. Nakamura, “Prediction of proximal femur
strength using a CT-based nonlinear finite element method: Differences
in predicted fracture load and site with changing load and boundary
conditions,” Bone, vol. 45, no. 2, pp. 226–231, 2009.
[5] D. Dragomir-Daescu, J. O. D. Buijs, S. McEligot, Y. Dai, R. C.
Entwistle, C. Salas, L. J. M. Iii, K. E. Bennet, S. Khosla, and S. Amin,
“Robust QCT/FEA Models of Proximal Femur Stiffness and Fracture
Load During a Sideways Fall on the Hip,” Ann. Biomed. Eng., vol. 39,
no. 2, pp. 742–755, 2010.
[6] J. E. M. Koivumäki, J. Thevenot, P. Pulkkinen, V. Kuhn, T. M. Link, F.
Eckstein, and T. Jämsä, “Ct-based finite element models can be used to
estimate experimentally measured failure loads in the proximal femur,”
Bone, vol. 50, no. 4, pp. 824–829, 2012.
[7] J. D. Michelson, A. Myers, R. Jinnah, Q. Cox, and M. Van Natta,
“Epidemiology of hip fractures among the elderly. Risk factors for
fracture type,” Clin. Orthop., vol. 311, pp. 129–135, 1995.
[8] J. H. Keyak, J. M. Meagher, H. B. Skinner, and C. D. Mote Jr,
“Automated three-dimensional finite element modelling of bone: a new
method,” J. Biomed. Eng., vol. 12, no. 5, pp. 389–397, 1990.
[9] T. M. Keaveny, R. E. Borchers, L. J. Gibson, and W. C. Hayes,
“Trabecular bone modulus and strength can depend on specimen
geometry,” J. Biomech., vol. 26, no. 8, pp. 991–1000, 1993.
[10] C. M. Les, J. H. Keyak, S. M. Stover, K. T. Taylor, and A. J. Kaneps,
“Estimation of material properties in the equine metacarpus with use of
quantitative computed tomography,” J. Orthop. Res. Off. Publ. Orthop.
Res. Soc., vol. 12, no. 6, pp. 822–833, 1994.
[11] T. S. Keller, “Predicting the compressive mechanical behavior of bone,”
J. Biomech., vol. 27, no. 9, pp. 1159–1168, 1994.
[12] J. H. Keyak, S. A. Rossi, K. A. Jones, and H. B. Skinner, “Prediction of
femoral fracture load using automated finite element modeling,” J.
Biomech., vol. 31, no. 2, pp. 125–133, 1997.
[13] D. T. Reilly, and A. H. Burstein, “The elastic and ultimate properties of
compact bone tissue,” J. Biomech., vol. 8, no. 6, pp. 393–405, 1975.
[14] W. C. Van Buskirk, and R. B. Ashman, “The elastic moduli of bone,”
Trans. American Society of Mechanical Engineers (Applied Mechanics
Division), American Society of Mechanical Engineers, New York, 1981,
pp. 131–143,.
[15] T. Yoshikawa, C. h. Turner, M. Peacock, C. W. Slemenda, C. M.
Weaver, D. Teegarden, P. Markwardt, and D. B. Burr, “Geometric
structure of the femoral neck measured using dual-energy X-ray
absorptiometry,” J. Bone Miner. Res., vol. 9, no. 7, pp. 1053–1064,
1994.
[16] M. Bessho, I. Ohnishi, T. Matsumoto, S. Ohashi, J. Matsuyama, K.
Tobita, M. Kaneko, and K. Nakamura, “Prediction of proximal femur
strength using a CT-based nonlinear finite element method: Differences
in predicted fracture load and site with changing load and boundary
conditions,” Bone, vol. 45, no. 2, pp. 226–231, 2009. [17] K. K. Nishiyama, S. Gilchrist, P. Guy, P. Cripton, and S. K. Boyd,
“Proximal femur bone strength estimated by a computationally fast finite
element analysis in a sideways fall configuration,” J. Biomech., vol. 46,
no. 7, pp. 1231–1236, 2013.
[18] S. N. Robinovitch, W. C. Hayes, and T. A. McMahon, “Prediction of
Femoral Impact Forces in fall on the Hip,” J. Biomech. Eng., vol. 113,
no. 4, pp. 366–374, 1991.
[19] J. S. Kim, T. S. Park, S. B. Park, J. S. Kim, I. Y. Kim, and S. I. Kim,
“Measurement of femoral neck anteversion in 3D. Part 1: 3D imaging
method,” Med. Biol. Eng. Comput., vol. 38, no. 6, pp. 603–609, 2000.
[20] B. Atilla, A. Oznur, O. Caglar, M. Tokgozoglu, and M. Alpaslan,
“Osteometry of the femora in Turkish individuals: a morphometric study
in 114 cadaveric femora as an anatomic basis of femoral component
design,” Acta Orthop. Traumatol. Turc., vol. 41, no. 1, pp. 64–68, 2007.
[21] E. Sariali, A. Mouttet, G. Pasquier, and E. Durante, “Three-Dimensional
Hip Anatomy in Osteoarthritis: Analysis of the Femoral Offset,” J.
Arthroplasty, vol. 24, no. 6, pp. 990–997, 2009.
[22] R. Nikander, P. Kannus, P. Dastidar, M. Hannula, L. Harrison, T.
Cervinka, N. G. Narra, R. Aktour, T. Arola, H. Eskola, S. Soimakallio,
A. Heinonen, J. Hyttinen, and H. Sievänen, “Targeted exercises against
hip fragility,” Osteoporos. Int., vol. 20, no. 8, pp. 1321–1328, 2008.
[23] B. Abrahamsen, T. van Staa, R. Ariely, M. Olson, and C. Cooper,
“Excess mortality following hip fracture: a systematic epidemiological
review,” Osteoporos. Int., vol. 20, no. 10, pp. 1633–1650, 2009.
[24] P. M. De Bakker, S. L. Manske, V. Ebacher, T. R. Oxland, P. A.
Cripton, and P. Guy, “During sideways falls proximal femur fractures
initiate in the superolateral cortex: Evidence from high-speed video of
simulated fractures,” J. Biomech., vol. 42, no. 12, pp. 1917–1925, 2009.
[25] J. C. Lotz, E. J. Cheal, and W. C. Hayes, “Stress distributions within the
proximal femur during gait and falls: implications for osteoporotic
fracture,” Osteoporos. Int. J. Establ. Result Coop. Eur. Found.
Osteoporos. Natl. Osteoporos. Found. USA, vol. 5, no. 4, pp. 252–261,
1995.
[26] E. Verhulp, B. van Rietbergen, and R. Huiskes, “Load distribution in the
healthy and osteoporotic human proximal femur during a fall to the
side,” Bone, vol. 42, no. 1, pp. 30–35, 2008.
[27] R. D. Carpenter, G. S. Beaupré, T. F. Lang, E. S. Orwoll, and D. R.
Carter, “New QCT Analysis Approach Shows the Importance of Fall
Orientation on Femoral Neck Strength,” J. Bone Miner. Res., vol. 20, no.
9, pp. 1533–1542, 2005.
[28] P. M. Mayhew, C. D. Thomas, J. G. Clement, N. Loveridge, T. J. Beck,
W. Bonfield, C. J. Burgoyne, and J. Reeve, “Relation between age,
femoral neck cortical stability, and hip fracture risk,” The Lancet, vol.
366, no. 9480, pp. 129–135, 2005.