Energetic Considerations for Sputter Deposition Processes

Sputter deposition processes, especially for sputtering
from metal targets, are well investigated. For practical reasons, i.e.
for industrial processes, energetic considerations for sputter
deposition are useful in order to optimize the sputtering process. In
particular, for substrates at floating conditions it is required to obtain
energetic conditions during film growth that enables sufficient dense
metal films of good quality. The influence of ion energies, energy
density and momentum transfer is thus examined both for sputtering
at the target as well as during film growth. Different regimes
dominated by ion energy, energy density and momentum transfer
were identified by using different plasma sources and by varying
power input, pressure and bias voltage.





References:
<p>[1] V.S. Smentkowski, Progr. Surf. Sci. 64 (2000) 1-58.
[2] R.A. Baragiola, Phil. Trans. R. Soc. Lond. A 362 (2004) 29-53.
[3] M.P. Seah, Nucl. Instr. Meth. Phys. Res. B 229 (2005) 348-358.
[4] P. Sigmund, in: Sputtering by Particle Bombardement, Vol. I, ed. R.
Behrisch, Springer-Verlag, Berlin, Germany, 1981, pp 9-71.
[5] S.J. Bull, A.M. Jones, A.R. McCabe, Surf. Coat. Technol. 54/55 (1992)
173-179.
[6] I. Petrov, F. Adibi, J.E. Greene, L. Hultman, J.E. Sundgren, Appl. Phys.
Lett. 63 (1993) 36-38.
[7] A. Hemberg, S. Konstantinidis, F. Renaux, J.P. Dauchot, R. Snyders,
Eur. Phys. J. Appl. Phys. 56 (2011) 24016 (5pp).
[8] S. Konstantinidis, R. Snyders, Eur. Phys. J. Appl. Phys. 56 (2011) 24002
(7pp).
[9] D. Hegemann, E. K&ouml;rner, N. Blanchard, M. Drabik, S. Guimond, Appl.
Phys. Lett. 101 (2012) 211603 (4pp).
[10] A. Manenschijn, W.J. Goedher, J. Appl. Phys. 69 (1991) 2923-2930.
[11] D. Hegemann, R. Riedel, W. Dressler, C. Oehr, B. Schindler, H.
Brunner, Chem. Vap. Dep. 3 (1997) 257-262.
[12] D. Hegemann, J.Phys D: Appl. Phys. 46 (2013) 205204 (8pp).
[13] M.A. Lieberman, A.J. Lichtenberg, Principles of Plasma Discharges
and Materials Processing, John Wiley &amp; Sons, New York, USA, 1994,
p 140.
[14] A.V. Phelps, J. Phys. Chem. Ref. Data 20 (1991) 557-574.
[15] Y. Kudriavtsev, A. Villegas, A. Godines, R. Asomoza, Appl. Surf. Sci.
239 (2005) 273-278.
[16] R.V. Stuart, G.K. Wehner, G.S. Anderson, J. Appl. Phys. 40 (1969) 803-
812.
[17] R.D. Kolasinski, J.E. Polk, D. Goebel, L.K. Johnson, J. Vac. Sci.
Technol. A 25 (2007) 236-245.
[18] M. Koedam, Physica 24 (1958) 692-694.
[19] H.K. Pulker, Coatings on Glass, Elsevier, Amsterdam, The Netherlands,
1984, p 216.
[20] K.H. M&uuml;ller, J. Appl. Phys. 58 (1985) 2573-2576.
[21] G.I. Grigorov, I.N. Martev, M.V. Stoyanova, J.L. Vignes, J.P. Langeron,
Thin Solid Films 198 (1991) 169-176.
[22] D. Hegemann, H. Brunner, C. Oehr, Surf. Coat. Technol. 174-175
(2003) 253-260.
[23] M. Amberg, K. Grieder, P. Barbadoro, M. Heuberger, D. Hegemann,
Plasma Process. Polym. 5 (2008) 874-880.
[24] D. Hegemann, M. Amberg, A. Ritter, M. Heuberger, Mater. Technol. 24
(2009) 41-45.
[25] M. Amberg, C. Kasdallah, A. Ritter, D. Hegemann, J. AdhesionSci.
Technol.24 (2010) 123-134.
[26] A. Hecimovic, A.P. Ehiasarian, J. Appl. Phys. 108 (2010) 063301 (8pp).
[27] B. Chapman, Glow Discharge Processes: Sputtering and Plasma
Etching, John Wiley &amp; Sons, New York, USA, 1980, p 215.
[28] A.G. Blachman, Metall. Trans.2 (1971) 699-709.
[29] G. Franz, Low Pressure Plasmas and Microstructuring Technology,
Springer, Heidelberg, Germany, 2009, p 412.
[30] J. Trieschmann, D. Hegemann, J. Phys. D: Appl. Phys. 44 (2011)
457201 (9pp).
[31] P.J. Kelly, R.D. Arnell, Vacuum 56 (2000) 159-172.
[32] F. Adibi, I. Petrov, J.E. Greene, L. Hultman, J.E. Sundgren, J. Appl.
Phys. 73 (1993) 8580-8589.</p>