Design and Implementation of TMS320C31 DSP and FPGA for Conventional Direct Torque Control (DTC) of Induction Machines

This paper introduces a new digital logic design, which combines the DSP and FPGA to implement the conventional DTC of induction machine. The DSP will be used for floating point calculation whereas the FPGA main task is to implement the hysteresis-based controller. The emphasis is on FPGA digital logic design. The simulation and experimental results are presented and summarized.




References:
[1] H. Le-Huy, "Microprocessors and digital IC-s for motion control,"
Proc. IEEE, Vol. 82, No.8, pp. 1140-1163, 1994.
[2] S. Brown and Z. Vranesic, "Fundamentals of Digital logic with
VHDL Design", McGraw-Hill (Singapore), 2000.
[3] Y.A. Chapuis, C. Girerd, F. Aubepart, J.P. Blonde, F. Braun,
"Quantization problem analysis on ASIC-Based Direct Torque
Control of induction machine", Proceeding of the IEEE IECON-98,
pp. 1527-1532, 1998.
PARAMETERS OF INDUCTION MACHINE
Stator resistance 10.9 ╬®
Rotor resistance 9.5 ╬®
Stator self inductance 0.859 H
Rotor self inductance 0.859 H
Mutual inductance 0.828 H
Rated speed 2880 rpm
Pole pair 2
DC link voltage 120 V
Rated flux 0.495 Wb
[4] F. Aubepart, P. Poure, Y.A. Chapuis, C. Girerd and F. Braun,
"Design and simulation of ASIC-based system control: application
to Direct Torque Control of induction machine", Proceeding of the
IEEE International Symposium on Industrial Electronics (ISIE-99),
vol 3, pp. 1250-1255, 1999.
[5] F. Aubepart, P. Poure, and F. Braun, "VLSI design approach of
complex motor control, Case of Direct Torque Control of AC
machine" 7th IEEE International Conference on Electronics,
Circuits and Systems, ICECS 2000, Vol. 2, pp. 814-817, 2000.
[6] Y.Y. Tzou and Hau-Jean Hsu, "FPGA Realization of Space Vector
PWM Control IC for Three-Phase PWM Inverters", Trans. IEEE on
Power Electronics, Vol.12, No. 6, pp. 953-963, 1997
[7] S. J. Kim, H. J. Lee, S. K. Kim, Y. A. Kwon, "ASIC Design for
DTC Based Speed Control of Induction Machine"
[8] R. Cmar, L. Rijnders, P. Schaumont, S. Vernalde and I. Bolsens,
"A Methodology and Design Environment for DSP, ASIC Fixed
Point Refinement",
[9] I. Takahashi, T. Noguchi, "A new quick-response and high
efficiency control strategy of an induction motor", IEEE Trans. Ind.
Appl., Vol. IA-22, No 5, pp. 820-827, 1986.
[10] D. Casadei, G. Gandi, G. Serra, A. Tani, "Switching strategies in
direct torque control of induction machines," in Proc. Of ICEM-94,
Paris (F), pp. 204-209, 1994.
[11] A. Purcell, and P. Acarnly, "Multilevel hysteresis comparator
forms for direct torque control schemes", Electronics Letters, Vol.
34, No. 6, pp. 601-603, 1998.
[12] T. Noguchi, M. Yamamoto, S. Kondo and I. Takahashi, "High
frequency switching operation of PWM inverter for direct torque
control of induction motor", Conference Record of the Industry
Applications Annual Meeting IAS-97, Vol. 1, pp. 775-780, 1997.
[13] D. Casadei, G. Grandi, G. Serra, A.Tani, (1994). " Effect of flux
and torque hysteresis band amplitude in direct torque control of
induction motor", in Conf. Rec. IEEE-IECON-94, pp.299-304.