Computational Model for Predicting Effective siRNA Sequences Using Whole Stacking Energy (% G) for Gene Silencing

The small interfering RNA (siRNA) alters the
regulatory role of mRNA during gene expression by translational
inhibition. Recent studies show that upregulation of mRNA because
serious diseases like cancer. So designing effective siRNA with good
knockdown effects plays an important role in gene silencing. Various
siRNA design tools had been developed earlier. In this work, we are
trying to analyze the existing good scoring second generation siRNA
predicting tools and to optimize the efficiency of siRNA prediction
by designing a computational model using Artificial Neural Network
and whole stacking energy (%G), which may help in gene silencing
and drug design in cancer therapy. Our model is trained and tested
against a large data set of siRNA sequences. Validation of our results
is done by finding correlation coefficient of experimental versus
observed inhibition efficacy of siRNA. We achieved a correlation
coefficient of 0.727 in our previous computational model and we
could improve the correlation coefficient up to 0.753 when the
threshold of whole tacking energy is greater than or equal to -32.5
kcal/mol.





References:
[1] T. Holen, M. Amarzguioui, M.T. Wiiger, E. Babaie, and H. Prydz,
"Positional effects of short interfering RNAs targeting the human
coagulation trigger tissue factor", in Nucleic Acids Res, vol. 30(8), 2002,
pp. 1757 - 1766.
[2] A. Fire, S. Xu, M.K. Montgomery, S.A. Kostas, S.E. Driver, and C.C.
Mello, "Potent and specific genetic interference by double stranded
RNA in c. elegans", in Nature, vol. 391, 1998, pp. 806 - 811.
[3] C. Cogoni, and G. Macino, "Post-transcriptional gene silencing across
kingdoms", in Genes Dev, vol. 10, 2000, pp. 638 – 643.
[4] H. Shi, A. Djikeng, T. Mark, E. Wirtz, C. Tschudi, and E. Ullu, "Genetic
interference in trypanosoma brucei by heritable and in-ducible doublestranded
RNA", in RNA, vol. 6(7), 2000, pp. 1069 - 1076.
[5] M.A. Martinez, A. Gutierrez, M. Armand-Ugon, J. Blanco, M. Parera, J.
Gomez, B. Clotet, and J.A. Este, "Suppression of chemokine receptor
expression by RNA interference allows for inhibition of HIV-1
replication ", in AIDS, vol. 16(18), 2002, pp. 2385 - 2390.
[6] H. Xia, Q. Mao, S.L. Eliason, S.Q. Harper, I.H. Martins, H.T. Orr, H.L.
Paulson, L. Yang, R.M. Kotin, and B.L. Davidson, "Rnai suppresses
polyglutamine induced neurodegeneration in a model of spinocerebellar
ataxia", in Nature Medicine, vol. 10, 2004, pp. 816 - 820.
[7] J. Soutschek, A. Akinc, B. Bramlage, K. Charisse, R. Constien, M.
Donoghue, S. El-bashir, A. Geick, P. Hadwiger, J. Harborth, M. John, V.
Kesavan, G. Lavine, R.K. Pandey, T. Racie, K.G. Rajeev, I. Rohl, I.
Toudjarska, G. Wang, S. Wuschko, D. Bumcrot, V. Koteliansky, S.
Limmer, M. Manoharan, and H.P. Vornlocher, "Therapeutic silencing of
an endogenous gene by systemic ad¬ministration of modified sirnas ", in
Nature, vol. 432, 2004, pp. 173 -178.
[8] A. Borkhardt, "Blocking oncogenes in malignant cells by RNA
interference new hope for a highly specific cancer treatment? ", in
Cancer Cell, vol. 2(3), 2002, pp. 167 – 168.
[9] M. Amarzguioui, and H. Prydz, “An algorithm, for selection of
functional sirna sequences”, in Biochem Biophys Res Commun, vol.
316(4), 2004, pp. 1050 - 1058.
[10] T.Tuschl, “RNA interference and small interfering RNAs”, in
Chembiochem, . vol. 2(4), 2001, pp. 239 - 241.
[11] J. Martinez, A. Patkaniowska, H. Urlaub, R. Luhrmann, and T. Tuschl,
“Single-stranded antisense sirnas guide target rna cleavage in rnai”, in
Cell, vol. 110(5), 2002, pp. 563 - 574.
[12] S.M. Elbashir, W. Lendeckel, and T. Tuschl, “RNA interfernce is
mediated by 21 and 22nucleotide RNAs”, in Genes and Development,
vol. 15, 2001, pp. 188 - 200.
[13] A. Reynolds, D. Leake, Q. Boese, S. Scaring, W. Marshall, and A.
Khvorova, “Rational siRNA design for RNA interference”, in Nature
Biotechnology, vol. 22(3), 2004, pp. 326 – 330.
[14] A.M. Chalk, C. Wahlestedt, and E.L. Sonnhammer, “ Improved and
automated prediction of effective sirna”,. in Biochem. Biophys.Res.
Commun, vol. 319, 2004, pp. 264 - 274.
[15] K. Ui-Tei, Y. Naito, F. Takahashi, T. Haraguchi, H. Ohki-Hamazaki, A.
Juni, R. Ueda, R. and K Saigo, “Guidelines for the selection of highly
effective sirna sequences for mammalian and chick rna interference”, in
Nucleic Acids Res., vol. 32, 2004, pp. 936 -948.
[16] A.C. Hsieh, R. Bo, J. Manola, F. Vazquez, O. Bare, A. Khvorova, S.
Scaringe, and W.R.Sellers, “ A library of siRNA duplexes targeting the
phosphoinositide 3-kinase pathway: determinants of gene silencing for
use in cell-based screens”, in Nucleic Acids Res., vol. 32(3), 2004,
pp.893 - 901.
[17] Y.Ren, W. Gong, Q. Xu, and X. Zheng, “siRecords: an extensive
database of mammalian siRNAs with efficacy ratings”, in Access, vol.
22(8), 2006, pp. 1–10
[18] D. Huesken, J. Lange, C. Mickanin, J. Weiler, F. Asselbergs, J. Warner,
B. Meloon, S. Enge, A. Rosenberg, D. Cohen, M. Labow, M.Reinhardt,
F.Natt and J.Hall, “Design of a genome-wide siRNA library using an
artificial neural network”, in Nat Biotechnology, vol. 23, 2006, pp.
:995–1002.
[19] J.P. Vert, N. Foveau, C. Lajaunie, and Y. Vandenbrouck, “An accurate
and interpretable model for siRNA efficacy prediction”, in BMC
Bioinformatics, vol. 7(520), 2006, pp. 1-17.
[20] S.A. Shabalina, A.N. Spiridonov, and A.Y. Ogurtsov, “ Computational
models with thermodynamic and composition features improve siRNA
design”, in BMC Bioinformatics, vol. 7(65), 2006, pp.1-16
[21] M.Ichihara, Y. Murakumo, A. Masuda, T. Matsuura, N. Asai, M. Jijiwa,
M. Ishida, J. Shinmi, H.Yatsuya, S. Qiao, M. Takahashi and K. Ohno,
“Thermodynamic instability of siRNA duplex is a prerequisite for
dependable prediction of siRNA activities”, in Nucleic Acids Research,
vol. 35(18), 2007, pp. 1–10.
[22] O.Matveeva, Y. Nechipurenko, L. Rossi, B. Moore, A.Y. Ogurtsov, J.F.
Atkins, P.Saetrom and S.A. Shabalina, “Comparison of approaches for
rational siRNA design leading to a new efficient and transparent
method”, in Access, vol. 35, 2007, pp.1–10.
[23] M.Mysara, J.M. Garibaldi, and M. Elhefnawi, “MysiRNA-Designer a
workflow for efficient siRNA design”, in PLoS One, vol. 6(10), 2011,
pp 1-10.
[24] M.Mysara, M. Elhefnawi, and J. M. Garibaldi., “MysiRNA: Improving
siRNA efficacy prediction using a machine-learning model combining
multi-tools and whole stacking energy (DG)”, in Journal of Biomedical
Informatics, vol. 45, 2012, pp. 528–534
[25] A. Khvorova, A. Reynolds, and S.D. Jayasena, “ Functional siRNAs and
miRNAs exhibit strand bias”, in Cell, vol. 115, 2003, pp. 209–216..
[26] J. Harborth, S.M. Elbashir, K. Vandenburgh, H. Manninga, S.A.
Scaringe, K. Weber, and T. Tuschl, “Sequence, chemical, and structural
variation of small interfering RNAs and short hairpin RNAs and the
effect on mammalian gene silencing”, in Antisense Nucleic Acid Drug
Dev, vol. 13, 2003, pp. 83–105.
[27] T.A. Vickers, S. Koo, C.F. Bennett, S.T. Crooke, N.M. Dean, and B.F.
Baker, “ Efficient reduction of target RNAs by small interfering RNA
and RNase H-dependent antisense agents: A comparative analysis”, in
Journal of Biology and Chemistry, vol. 278, 2003, pp. 7108–7118,
[28] M. Reena, S. P. David, “Computational Model for Predicting Effective
siRNA Sequences for Gene Silencing”, Eight International Conference
on Data Mining and Warehousing (ICDMW-2014),2014,pp138-142.