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Abstract—The small interfering RNA (siRNA) alters the 

regulatory role of mRNA during gene expression by translational 

inhibition. Recent studies show that upregulation of mRNA because 

serious diseases like cancer. So designing effective siRNA with good 

knockdown effects plays an important role in gene silencing. Various 

siRNA design tools had been developed earlier. In this work, we are 

trying to analyze the existing good scoring second generation siRNA 

predicting tools and to optimize the efficiency of siRNA prediction 

by designing a computational model using Artificial Neural Network 

and whole stacking energy (∆G), which may help in gene silencing 

and drug design in cancer therapy. Our model is trained and tested 

against a large data set of siRNA sequences. Validation of our results 

is done by finding correlation coefficient of experimental versus 

observed inhibition efficacy of siRNA. We achieved a correlation 

coefficient of 0.727 in our previous computational model and we 

could improve the correlation coefficient up to 0.753 when the 

threshold of whole tacking energy is greater than or equal to -32.5 

kcal/mol 

 

Keywords—Artificial Neural Network, Double Stranded RNA, 

RNA Interference, Short Interfering RNA.  

I. INTRODUCTION 

N central dogma of molecular biology, DNA is first 

transcribed into messenger RNA (mRNA). The information 

for a particular gene is encoded in mRNA, and mRNA acts as 

a template for protein production. A gene is expressed 

meaning that the information encoded in the mRNA of that 

gene is converted into amino acid sequences. This reveals the 

regulatory role of mRNA in gene expression. The normal role 

of gene regulation of mRNA may be altered which leads up or 

down regulations. This up and down regulation of mRNA may 

cause several diseases like Cancer. Gene silencing is a 

mechanism to control the regulatory role of mRNA. Recent 

studies show that non-protein coding RNAs such as 

microRNA (miRNA) and short interfering RNA (siRNA) play 

an important role in gene silencing, cancer diagnosis and 

therapy. 

RNA interference (RNAi) is biological process by which 

selective gene silencing can be done by inducing exogenous 

siRNA capable of degrading the target mRNA. Selective gene 

silencing is widely useful in gene expression analysis and 
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functional genomics. The short RNA species called siRNAs 

are formed naturally from double stranded RNA (dsRNA) or 

are synthesized externally and then introduced into the cell. 

siRNA, when activated with RNA induced silencing complex 

(RISC) degrades complementary mRNA sequences. This is 

called mRNA knockdown by siRNA. This knockdown 

prevents mRNA from producing amino acid sequences which 

are responsible for gene expression. Thus gene expression can 

be altered by siRNAs which are efficient enough to do 

translational inhibition. Here in designing siRNA with good 

knockdown efficacy play an important role in cancer detection 

and diagnosis. 

Numerous siRNA design tools had been introduced earlier 

to synthesize possible siRNAs targeting the mRNAs. But 

different studies indicate that out of the possible siRNAs that 

can be synthesized against a particular target, only a fraction 

of these are successful in causing any degradation and all 

siRNAs do not result in equal knockdown effects [1]. The 

efficacy of the siRNAs differed among different target sites in 

the same target mRNA. Therefore, it is important to select 

effective siRNA sequences that are highly functional in 

causing more than a certain percentage of the target mRNA 

sequence to degrade. In most studies, siRNAs causing 

knockdown of more than 75 percentage of the target mRNA 

are considered highly efficient but the threshold varies 

depending on the level of silencing required. Thus the goal of 

siRNA efficacy prediction is to aid in designing siRNA 

sequences that are highly efficient against their target mRNA 

sequences. 

A. RNAi Pathway 

The RNAi pathway was discovered by Fire and Mello in 

1998 [2]. RNAi is a biological process of post-transcriptional 

gene silencing mechanism [3]. It helps in developing various 

therapeutic applications because of its ability to do specific 

target silencing [4]. Genes causing diseases can be controlled 

during gene expression by transcriptional, post-transcriptional, 

and post translational intervention. Drugs for disease control 

have been targeted towards proteins, which occurs in the post 

translational phase. RNAi mainly targets the protein producing 

mRNA and can thereby control disease earlier in the 

transcription phase. RNAi has been successfully used to target 

diseases such as AIDS [5], neurodegenerative diseases [6], 

cholesterol [7] and cancer [8] on mice with the hope of 

extending these approaches to treat humans. 

Computational Model for Predicting Effective siRNA 

Sequences Using Whole Stacking Energy (∆ G) for 

Gene Silencing 
Reena Murali, David Peter S. 

I



International Journal of Biological, Life and Agricultural Sciences

ISSN: 2415-6612

Vol:9, No:1, 2015

2

 

 

II.  EXISTING RULES FOR SIRNA DESIGN 

Even though several algorithms and methods have been 

developed to predict efficiency of siRNA, only a few of them 

have achieved an acceptable level of specificity and 

sensitivity. These algorithms are classified into two groups; 

first generation and second generation methods.  

A. First Generation Tools 

The first generation tools [9]-[16] select the most efficient 

siRNAs based on secondary structure, thermodynamic 

properties, target positions, and so on. But the results shown 

that they have a low prediction accuracy of only up to 65%, 

compared with experimentally proven data with 90% 

inhibition capacity. Also nearly 20% of the sequences were 

found inactive [17]. The following sections briefly summarize 

the results of several studies. 

1) Amarzguioui Method - Study by Amarzguioui et al. [9] 

follows a scoring method identified by different set of 

rules. They studied 46 siRNAs, and identified some 

important features of the 19 nt siRNA that correlates with 

knockdown of more than 70. In this study, functionality is 

indicated by a knockdown of 70. 

2) Tuschl Rules - This technique is widely used for 

designing effective siRNAs. According to this algorithm 

[12], synthesizing siRNA duplexes of lengths 21 nt with 

19 nt base-paired sequence with 2 nt 3' overhang at both 

ends mediates efficient cleavage of target mRNA. 

According to this study, target sequence should have a 

GC content of around 50 percent. 

3) Reynolds Rules - Reynolds et al. [13] analyzed a set of 

180 siRNAs. They divided the siRNAs in to different 

groups based on their functionality to find properties with 

high correlation to functionality. Also they described a set 

of eight rules governing the siRNA sequence that are 

highly indicative in determining the extent of mRNA 

knockdown. This algorithm assigns a score based on the 

number of rules satisfied and siRNAs satisfying 6 or more 

rules are predicted to be functional. 

4) Stockholm Rules - This prediction algorithm by Chalk et 

al. [14] incorporates the thermodynamic properties of the 

siRNA. Using a scoring scheme that adds 1 for each rule 

satisfied, and a cutoff score of 6, efficient siRNAs can be 

detected. They further analyzed the siRNAs using the 

regression tree technique, but the energy parameters 

which were found to be statistically significant in their 

study did not get chosen as important features by this 

method. 

5) Ui-Tei Rules - Ui-Tei et al. [15] analyzed 62 targets in 

mammalian cells and Drosophila cells and came up with 

four features which siRNAs should simultaneously satisfy 

to cause efficient silencing. These rules were found 

applicable to mammalian cells but did not apply to 

Drosophila cells. 

6) Hseih Rules - Hseih et al. [16] identify the following 

features which distinguish effective and ineffective RNAi. 

• Target sequences that are in the middle of the coding 

sequence resulted in significantly less silencing. 

• Silencing by duplexes targeting the 3 untranslated region 

(UTR) is comparable with duplexes targeting the coding 

sequence. 

• Pooling of four or five duplexes per gene results in highly 

efficient silencing. 

• siRNA sequences seen to produce more than 70G or C in 

position 11 and T in position 19. 

B.  Second Generation Tools 

Because of some limitations in siRNA efficacy prediction 

of first generation tools, there was a need to develop 

techniques to improve the efficiency of predicted siRNA. 

These second generation models are based on either artificial 

neural network or linear regression model. Some of the good 

scoring second generation tools like Biopredsi [18], DSIR 

[19], ThermoComposition21 [20], i-Score [21], Scales [22], 

My siRNA-Designer [23], MysiRNA [24] were developed by 

introducing data mining techniques to improve the efficiency 

of siRNA with their experimental inhibition. Biopredsi, 

ThermoComposition21 MysiRNA-Designer package and 

MysiRNA used the Artificial Neural Network model. DSIR, i-

Score and Scales used simplified linear regression model. In 

Biopredsi a reasonable amount of accuracy is obtained using 

‘Huesken’ (Novartis) dataset [18]. ThermoComposition21 

improved the prediction accuracy by combined position 

dependent features together with thermodynamic features in 

one artificial neural network model. The prediction accuracy is 

improved in DSIR, i-Score and Scales using linear regression 

model. Further the MysiRNA-Designer package and 

MysiRNA much improved the prediction accuracy by artificial 

neural network model. 

III. MATERIALS AND METHODS 

A. Data Sets 

To train our model we have used the Huesken dataset (Data 

Set A), which consists of 2431 siRNAs with their 

experimental inhibition efficiency. Many good scoring second 

generation tools like Biopredsi, DSIR, ThermoComposition21, 

i-Score, MysiRNA-Designer and MysiRNA used this data set 

to train their data. Another dataset (Data Set B) used as test 

data set consisted of 419 siRNA which was collected by 

Ichihara [21] from five different publications: Reynolds [13], 

Ui-Tie (15), Khovorova [25], Haborth [26] and Vickers [27] in 

the development and evaluation of the i-Score software. Both 

these data sets were used by us to validate the results. 

B. Parameter Selection 

All the existing siRNA design tools use different features 

and weights in their model design. We have used an attempt to 

combine these features for improving the design. In our 

previous model [28], we have considered Biopredsi, 

ThermoComposition21, i-Score, DSIR, MysiRNA as 

parameters to our model. We have extended our previous 

model by considering one of the important thermodynamic 

properties called Whole Stacking Energy (∆G). When Whole 

Stacking Energy is combined with these parameters using 
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Artificial Neural Network Model, a considerable improvement 

in the prediction accuracy was obtained. 

C. Neural Network Model 

A multi-layer perceptron, feed-forward neural network 

trained using the Resilient Propagation (RProp) algorithm is 

used for computing the final score. The neural network which 

we use has 6 neurons in the input layer; three hidden layers of 

8 neurons each and 1 neuron in the output layer (Fig. 1). The 

neural network was built and trained using Neuroph Studio 

and integrated into our siRNA designer tool. The serialized 

neural network model, and the normalization parameters 

which were used, are provided along with our designer tool. 

The Neuroph library for Java is used to create and use the 

siRNA designer neural network model. Neuroph is a 

lightweight Java neural network framework to develop 

common neural network architectures. The Neuroph Studio 

IDE provided by Neuroph was used to easily design and test 

the model. The IDE provides an easy-to-use graphical 

interface to design various neural network configurations, and 

train/test the network using various neural network training 

algorithms. It is available under version 2.0 of the Apache 

License. Working Model of the algorithm is shown in Fig. 2. 

 

 

Fig. 1 Neural Network Model 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

IV. SIRNA DESIGNER WORKFLOW 

 

Fig. 2 Working Model of our Algorithm 

V. RESULTS 

Inhibition capacity of siRNA for a targeted mRNA has been 

observed with our predicted model (Fig. 3). Also comparison 

between inhibition activities (Experimental versus Observed) 

for Huesken dataset (Data Set A) by each of the five good 

scoring tools (Biopredsi, DSIR,ThermoComposition21, i-

Score and MysiRNA) with our model has been done. Pearson 

correlation coefficient (R) was calculated for each of the six 

scoring tools. We got a Pearson correlation coefficient of R= 

0.727 for Data Set A in [28] and we could achieve an 

improved correlation coefficient of R =0.753 when the 

threshold of whole tacking energy is greater than or equal to -

32.5 kcal/mol, which shows improvement in the performance 

compared to the other five models (Table I, Figs. 4, 5). 

Input an mRNA sequence to be targeted 

Enumerate all possible siRNA sequences 

Compute various metrics for each siRNA  

Using our siRNA Designer Neural Network model 

compute final score of each siRNA 

Filter out siRNAs with low scores and output the 

remaining list of siRNAs 
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Fig. 4 Comparison between the Second Generation Models and Our Model using Pearson Correlation Analysis. Pearson Correlation 

Coefficient of Our model showed improvement in the performance co

 

 

Fig. 3 Sample Screen Shot  

4 Comparison between the Second Generation Models and Our Model using Pearson Correlation Analysis. Pearson Correlation 

model showed improvement in the performance compared to the other five models

 

 

 

 

 

4 Comparison between the Second Generation Models and Our Model using Pearson Correlation Analysis. Pearson Correlation 

mpared to the other five models 
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Fig. 5 Comparison between the Second Generation Models and Our Model designed with whole stacking energy, delta G >=-32.5 kcal/mol, 

using Pearson Correlation Analysis. Pearson Correlation Coefficient of Our model showed improvement in the performance compared to the 

other five models 

 

 

 

Fig. 6 Experimental siRNAs activities of Dataset A were plotted against the predicted siRNAs activities by each of the second generation tools 

(s-Biopredsi, DSIR, ThermoComposition21, i-Score and MysiRNA) together with Our model. Pearson correlation coefficient (R) was also 

shown for each of the six scoring tools 
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Fig. 7 Experimental siRNAs activities of Dataset A with whole stacking energy Delta G >=-32.5 kcal/mol were plotted against the predicted 

siRNAs activities by each of the second generation tools (s-Biopredsi, DSIR, ThermoComposition21, i-Score and MysiRNA) together with 

Our model. Pearson correlation coefficient (R) was also shown for each of the six scoring tools 

 

VI. VALIDATION 

The efficiency of the developed model is tested with 

Huesken dataset (Data Set A) consisted of 2431 siRNA and 

the Test Data set (Data Set B) consisted of 419 siRNA, 

mentioned in data set description. Also we have done a 

comparative analysis with other second generation algorithms 

like Biopredsi, DSIR, ThermoComposition21, i-Score and 

MysiRNA. The experimentally proven siRNA activity was 

plotted against the predicted activity by all these five previous 

techniques along with our model (Figs. 6 and 7). Accuracy of 

siRNA prediction was validated using Pearson Correlation 

Coefficient. 
 

TABLE I 
PEARSON CORRELATION COEFFICIENT OF SIRNA DESIGNER MODELS 

Designer Model 
Correlation 

Coefficient (R) 

Correlation Coefficient 

(R) when ∆G > = -32.5 

kcal/mol 

Our Model 0.727 0.753 

MysiRNA 0.687 0.707 

DSIR 0.687 0.698 

Biopredsi 0.665 0.657 

ThermoComposition21 0.635 0.552 

i-Score 0.635 0.653 

VII. CONCLUSION AND FUTURE WORK 

In this work, an improved computational model is designed 

using one of the important thermodynamic property of siRNA 

called whole stacking energy (Delta G) and Artificial Neural 

Network model to predict siRNA inhibition activity based on 

five previous second generation models s-Biopredsi, DSIR, 

ThermoComposition21, i-Score and MysiRNA. The prediction 

accuracy is improved compared to all these previous models. 

The improvement in Pearson correlation coefficient shows 

better performance of our model with previous good scoring 

siRNA design models. This improvement in performance may 

help in gene silencing and there by cancer diagnosis and drug 

design. In our future work, we are trying to further improve 

and optimize the sensitivity and specificity which can address 

the off target effects of siRNA. 
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