Closed-Form Solutions for Nanobeams Based On the Nonlocal Euler-Bernoulli Theory

Starting from nonlocal continuum mechanics, a
thermodynamically new nonlocal model of Euler-Bernoulli
nanobeams is provided. The nonlocal variational formulation is
consistently provided and the governing differential equation for
transverse displacement is presented. Higher-order boundary
conditions are then consistently derived. An example is contributed in
order to show the effectiveness of the proposed model.





References:
[1] J. Arcamone, G. Rius, G. Abadal, J. Teva, N. Barniol and F. Pérez-
Murano, “Micro/nanomechanical resonators for distributed mass sensing
with capacitive detection,” Microelectron. Eng., vol. 83 n. 4-9, pp.
1216–1220, 2006.
[2] E. Gil-Santos, D. Ramos, J. Martínez, M. Ferníndez-Regúlez, R. García,
M. Calleja and J. Tamayo, “Nanomechanical mass sensing and stiffness
spectrometry based on two-dimensional vibrations of resonant
nanowires,” Nature Nanotechnology, vol. 5, n. 9, pp. 641–645, 2010.
[3] T. Larsen, S. Schmid, L. Grönberg, A. Niskanen, J. Hassel and S. Dohn,
Boisen, “Ultrasensitive string-based temperature sensors,” Appl. Phys.
Lett., vol. 98, n. 12, pp. .
[4] H. Sadeghian, H. Goosen, A. Bossche and F. Van Keulen, “Application
of electrostatic pull-in instability on sensing adsorbate stiffness in
nanomechanical resonators,” Thin Solid Films, vol. 518, n. 17, pp. 5018–
5021, 2010.
[5] M. Narducci, E. Figueras, M. Lopez, I. Gracia, J. Santander, P. Ivanov,
L. Fonseca and C. Cane, “Sensitivity improvement of a microcantilever
based mass sensor,” Microelectron. Eng., vol. 86, n. 4-6, pp. 1187–1189,
2009.
[6] H. Sadeghiant, C. Yang, K. Gavan, J. Goosen, E. Van Der Drift, H. Van
Der Zant, P. French, A. Bossche and F. Van Keulen, “Effects of surface
stress on nanocantilevers,” e-Journal of Surf. Sci. Nanotec., vol. 7, pp.
161–166, 2009.
[7] B. Jankovic, J. Pelipenko, M. Škarabot, I. Muševic and J. Kristl, “The
design trend in tissue-engineering scaffolds based on nanomechanical
properties of individual electrospun nanofibers,” Int. J. Pharm., vol. 455,
n. 1-2, pp. 338–347, 2013. [8] D.C.C. Lam, F. Yang, A.C.M. Chong, J. Wang and P. Tong,
“Experiments and theory in strain gradient elasticity,” J. Mech. Phys.
Solids, vol. 51, pp. 1477-1508, 2003.
[9] F.Q. Yang, “Size dependent effective modulus of elastic composite
materials: spherical nanocavities at dilute concentrations,” J. Appl.
Phys., vol. 95, pp. 3516-3520, 2004.
[10] I.A. Guz, A.A. Rodger, A.N. Guz and J.J. Rushchitsky, “Developing the
mechanical models for nanomaterials,” Composites Part A: Applied
Science and Manufacturing, vol. 38, pp. 1234-1250, 2007.
[11] Z. Yao, C.-C. Zhu, M. Cheng and J. Liu, “Mechanical properties of
carbon nanotube by molecular dynamics simulation,” Comp. Mat. Sci.,
vol. 22, pp. 180-184, 2001.
[12] B.W. Xing, Z.C. Chun and C.W. Zhao, “Simulation of Young's modulus
of single-walled carbon nanotubes by molecular dynamics,” Physica B:
Condensed Matter, vol. 352, pp. 156-163, 2004.
[13] F. Marotti De Sciarra, R. Barretta, “A gradient model for Timoshenko
nanobeams,” Physica E: Low-Dimensional Systems and Nanostructures,
vol. 62, pp. 1–9, 2014.
[14] A. Eringen, Nonlocal Continuum Field Theories, Springer Verlag, 2002.
[15] E.C. Aifantis, “Update on a class of gradient theories,” Mech. Mat., vol.
35, pp. 259-280, 2003.
[16] M. Mohammad-Abadi and A.R. Daneshmehr, “Size dependent buckling
analysis of microbeams based on modified couple stress theory with
high order theories and general boundary conditions,” Int. J. Eng. Sci.,
vol. 74, pp. 1-14, 2014.
[17] H.M. Ma, X.L. Gao and J.N. Reddy, “A microstructure-dependent
Timoshenko beam model based on a modified couple stress theory,” J.
Mech. Phys. Solids, vol. 56, pp. 3379-3391, 2008.
[18] F. Marotti de Sciarra, “On non-local and non-homogeneous elastic
continua,” Int. J. Solids Struc., vol. 46, pp. 651-676, 2009.
[19] F. Marotti de Sciarra, “A nonlocal finite element approach to
nanobeams,” Advances in Mechanical Engineering, vol. ID 720406, pp.
1-8, dx.doi.org/10.1155/2013/720406, 2013.
[20] F. Marotti de Sciarra, “Finite element modelling of nonlocal beams,”
Physica E: Low-dimensional Systems and Nanostructures, vol. 59 pp.
144–149, 2013.
[21] R. Barretta, F. Marotti de Sciarra and M. Diaco, “Small-scale effects in
nanorods,” Acta Mech., vol. 225, pp. 1945-1953, 2014.
[22] R. Barretta, F. Marotti de Sciarra, “A nonlocal model for carbon
nanotubes under axial loads,” Adv. Mat. Sci. and Eng., Article ID
360935, pp. 1-6, 2013 doi: 10.1155/2013/360935.
[23] R. Barretta, F. Marotti de Sciarra, “Analogies between nonlocal and
local Bernoulli-Euler nanobeams,” Arch. Appl. Mech, vol. 85, pp. 89-
99, 2015.
[24] J. Peddieson, G.R. Buchanan and R.P. McNitt, “Application of nonlocal
continuum models to nanotechnology,” Int. J. Eng. Sci., vol. 41, pp.
305-312, 2003.
[25] C.M. Wang, Y.Y. Zhang, S.S. Ramesh and S. Kitipornchai, “Buckling
analysis of micro-and nano-rods/tubes based on nonlocal Timoshenko
beam theory,” J. Phys. D: Appl. Phys., vol. 39, pp. 3904-3909, 2006.
[26] J.N. Reddy, “Nonlocal nonlinear formulations for bending of classical
and shear deformation theories of beams and plates,” Int. J. Eng. Sci.,
vol. 48, pp. 1507-1518, 2010.
[27] F. Marotti de Sciarra, “Hardening plasticity with nonlocal strain
damage,” Int. J. Plasticity, vol. 34, pp. 114-138, 2012.