Binary Mixture of Copper-Cobalt Ions Uptake by Zeolite using Neural Network

In this study a neural network (NN) was proposed to predict the sorption of binary mixture of copper-cobalt ions into clinoptilolite as ion-exchanger. The configuration of the backpropagation neural network giving the smallest mean square error was three-layer NN with tangent sigmoid transfer function at hidden layer with 10 neurons, linear transfer function at output layer and Levenberg-Marquardt backpropagation training algorithm. Experiments have been carried out in the batch reactor to obtain equilibrium data of the individual sorption and the mixture of coppercobalt ions. The obtained modeling results have shown that the used of neural network has better adjusted the equilibrium data of the binary system when compared with the conventional sorption isotherm models.




References:
[1] R Petrus, J Warchol. "Ion exchange equilibria between clinoptilolite and
aqueous solution of Na+/C2+, Na +/Cd2+ and Na+/Pb2+". Microporous
and Mesoporous Materials. vol. 61, 2003, pp.137-146.
[2] W.W. Eckenfelder, Industrial Water Pollution Control, second ed.,
McGraw-Hill, New York, 1989.
[3] S.C. Kesraoui-Ouki, R. Cheeseman, R.J. Perry. "Natural zeolite
utilization in pollution control: A review of applications to metals'
effluents". Chem. Technol. Biotechnol. vol.59, 1994, pp.121-126.
[4] S.E. Bailey, T.J. Olin, R.M. Bricka, DD Adrian,."A review of potentially
low-cost sorbents for heavy metals", Wat. Res. vol.33, 1999, pp. 2469-
2479.
[5] S.K. Ouki, M. Kavannagh. "Treatment of metal- contaminated
wastewaters by use of natural zeolites". Wat. Sci. Tech. vol.39, 1999,
pp.115-120.
[6] F.A. Mumpton." Natural zeolites: Occurrence, properties, use".
Elmsford, New York, Pergamon Press. vol. 1676, pp. 309-318.
[7] G. Gottardi, E. Gall. Natural Zeolites. Minerals and Rocks Springer-
Verlag, 1985, p.321.
[8] W.L. Polzer, M.G. Rao, H.R. Fuentes, R.J. Beckman.
"Thermodynamically Derived Relationships between the Modified
Langmuir Isotherm and Experimental Parameters," Environ. Sci.
Technol., vol. 26- 9, 1992, pp.1780-1786.
[9] Z .Zheng, D. Gu, R.G. Anthony. "Estimation of Cesium Ion Exchange
when Using Crystalline Silico-titanates," Ind. Eng. Chem. Res., vol.34,
1995, pp. 2142-2147.
[10] J. Novosad, A.L. Myers."Thermodynamics of ion-exchange as an
adsorption process". Can. J. Chem. Eng., vol.60, 1982, pp. 500-603.
[11] S. Melis, G. Cao and M. Morbidelli, "A new model for the simulation of
ion exchange. Equilibra", Ind. Eng. Chem. Res., vol.34, 1995, pp. 3916-
3924.
[12] F. Helfferich, Ion Exchange, McGraw-Hill, New York, 1962.
[13] W. Kaminski, E. Tomczak, K. Jaros."Interactions of metal ions sorbed
on chitosan beads". Desalination. vol.218, 2008, pp. 281-286.
[14] B.B. Mamba, D.W. Nyembe, A.F. Mulaba-Bafubiandi. "The effect of
conditioning with NaCl, KCl and HCl on the performance of natural
clinoptilolite-s removal efficiency of Cu2+ and Co2+ from Co/Cu
synthetic solutions". Water SA, vol.35, 2009.pp. 307-314.
[15] T. Motsi, N.A. Rowson, M.J.H. Simmons. "Adsorption of Heavy Metals
from Acid Mine Drainage by Natural Zeolite". Int. J. Miner.Process. vol.
92, 2008, pp. 42-48.
[16] K.G. Bhattacharyya, S.S. Gupta." Adsorption of a few heavy metals on
natural and 5 modified kaolinite and montmorillonite: A review". Adv.
Colloid Interface Sci. vol.140 6, 2008, pp. 114-131.
[17] B Yu, Y Zhang, A. Shukla, SS Shukla, KL Dorris."The removal of
heavy metal from aqueous solutions by sawdust adsorption -removal of
copper" J. Haz. Mat. vol.80, pp.33-42.
[18] A. Olgun, N. Atar. "Removal of copper and cobalt from aqueous
solution onto waste containing boron impurity". Chemical Engineering
Journal. vol.167, 2011, pp. 140-147.
[19] M.R. Fagundes-Klen, P. Ferri, T.D. Martins, C.R.G. Tavares, E.A.
Silva." Equilibrium study of thr binary mixture of cadmium-zinc ions
biosorption by the Sargassum filipendula species using adsorption
isotherms models and neural network". Biochemical Engineering
Journal. vol. 34. 2007, pp. 136-146.
[20] B.E. Reed, M.R. Matsumoto." Modeling Cadmium Adsorption by
Activated Carbon Using the Langmuir and Freundlich Isotherm
Expressions". Sep.Sci. Technol.vol. 28, 1993, pp.2179-2195.
[21] W. Ma, J.M. Tobin." Development of multimetal binding model and
application to binary metal biosorption onto peat biomass". Water Res.
vol.37, 2003, pp. 3967-3977.
[22] K.H. Chang, B. Volesky." Description of two metal biosorption
equilibria by Langmuir-type models", Biotechnol. Bio. Eng. 47,1995
,pp. 451-460.
[23] A. Sachez, A. Ballester, M.A. Blazquez, F. Gonzalez, J. Munoz, A.
Hammaini." Biosorption of copper and zinc by Cymodocea no-dosa".
FEMS Microbiol. Rev.vol. 23, 1999, pp.527-536.
[24] J.E. Bailey, D.F. Ollis, Biochemical Engineering Fundamentals, 2nd ed.,
Mcgraw-Hill, New York, 1986.
[25] D.M. Ruthven, Principles of adsorption and adsorption processes, John
Wiley & Sons, New York, 1984.
[26] Y. Sag, T. Kutsal." The Simultaneous Biosorption of Cu (II) and Zn on
Rhizopus arrhizus: Application of the Adsorption Models ".
Hydrometallurgy. vol.50, 1998, pp. 297-314.
[27] J.S. Jain, V.L. Snoeying. "Chromium removal by carbon adsorption". J
Water, Poll. Control. Fed, 218, 2008, pp. 281-286.
[28] J.T. Matheickal, Q. Yu, G.M. Woodburn."Biosorption of cadmium (II)
and copper (II) by pretreated biomass of marine alga Gracilaria
fisheri". Water Res. vol.33, 1998, pp. 335-342.
[29] J.T. Matheickal, Q. Yu." Biosorption of lead (II) and copper (II) from
aqueous solutions by pre-treated biomass of Australian marine algae".
Bioresour. Technol. 69, 1999, pp. 223-229.
[30] Q. Yu, P. Kaewsarn, L.V. Duong."Electron micro- scopy of biosorbents
from marine macro alga. Durvillaea potatorum". Chemosphere vol.41,
2000, pp.589-594.
[31] S.K. Jha, G. Madras." Neural Network Modeling of Adsorption
Equilibria of Mixtures in Supercritical Fluids". Ind. Eng. Chem.Res.44,
2005, pp. 7038-7041.
[32] JA Nelder, R Mead, A simplex method for function minimization,
comput. J.vol. 7, 1965, pp. 308-315.