Bacteriological Screening and Antibiotic – Heavy Metal Resistance Profile of the Bacteria Isolated from Some Amphibian and Reptile Species of the Biga Stream in Turkey

In this article, the antibiogram and heavy metal
resistance profile of the bacteria isolated from total 34 studied
animals (Pelophylax ridibundus = 12; Mauremys rivulata = 14;
Natrix natrix = 8) captured around the Biga Stream, are described.
There was no database information on antibiogram and heavy metal
resistance profile of bacteria from these area’s amphibians and
reptiles.
A total of 200 bacteria were successfully isolated from cloaca and
oral samples of the aquatic amphibians and reptiles as well as from
the water sample. According to Jaccard’s similarity index, the degree
of similarity in the bacterial flora was quite high among the
amphibian and reptile species under examination, whereas it was
different from the bacterial diversity in the water sample. The most
frequent isolates were A. hydrophila (31.5%), B. pseudomallei
(8.5%), and C. freundii (7%). The total numbers of bacteria obtained
were as follows: 45 in P. ridibundus, 45 in N. natrix 30 in M.
rivulata, and 80 in the water sample. The result showed that
cefmetazole was the most effective antibiotic to control the bacteria
isolated in this study and that approximately 93.33% of the bacterial
isolates were sensitive to this antibiotic. The multiple antibiotic
resistances (MAR) index indicated that P. ridibundus (0.95) > N.
natrix (0.89) > M. rivulata (0.39). Furthermore, all the tested heavy
metals (Pb+2, Cu+2, Cr+3, and Mn+2) inhibit the growth of the bacterial
isolates at different rates. Therefore, it indicated that the water source
of the animals was contaminated with both antibiotic residues and
heavy metals.





References:
[1] G. Blanco, J. A. Lemus, J. Grande, L. Gangoso, J. M. Grande, J. A.
Donázar, B. Arroyo, O. Frías, and F. Hiraldo, Geographical variation in
cloacal microflora and bacterial antibiotic resistance in a threatened
avian scavenger in relation to diet and livestock farming practices.
Environ. Microb., vol. 9, no. 7, 2007, pp. 1738–1749.
[2] M. A. Mitchell, and S. M. Shane, Salmonella in Reptiles. Semin. Avian
Exo. Pet., vol. 10, no. 1, 2001, pp. 25-35.
[3] M. Corrento, A. Madio, K. G. Friedrich, G. Greco, C. Desario, S.
Tagliabue, M. D’Incau, M. Campolo, and C. Buonavoglia, Isolation of
Salmonella Strains from reptile faeces and comparison of different
culture media, J. Appl. Microbiol., vol. 96, 2004, pp. 709-715.
[4] L. B. Kobolkuti, G. A. Czirjak, M. Tenk, A. Szakacs, A. Kelemen, and
M. Spinu, Edwardsiella tarda associated subcutenous abscesses in a
captive grass snake (Natrix natrix, Squamata:Colubridae). J Fac Vet
Med, vol.19, no. 6, 2013, pp. 1061-1063.
[5] M. Santoro, G. Hernandez, M. Caballero, and F. Garcia, Aerobic
Bacterial Flora of Nesting Green Turtles (Chelonia mydas) from
Tortuguero National Park, Costa Rica. J. Zoo Wildl. Med., vol. 37, no. 4,
2006, pp. 549-552.
[6] C. L. Densmore, and D. E. Green, Diseases of Amphibians. ILAR
Journal, vol. 48, no. 3, 2007, pp. 235-254.
[7] V. Schmidt, R. Mock, E. Burgkhardt, A. Junghanns, F. Ortlieb, I. Szabo,
R. Marschang, I. Blindow, and M. E. Krautwald-Junghanns, Cloacal
aerobic bacterial flora and absence of viruses in free-living Slow Worms
(Anguis fragilis), Grass Snakes (Natrix natrix) and European Adders
(Vipera berus) from Germany. EcoHealth, 2014, DOI: 10.1007/s10393-
014-0947-6.
[8] M. Schröter, P. Roggentin, J. Hofmann, A. Speicher, R. Laufs, and D.
Mack, Pet snakes as a reservoir for Salmonella enterica subsp.
Diarizonae (Serogroup IIIb): a prospective study. Appl. Environ.
Microbiol., vol. 70, 2004, pp. 613-615.
[9] L. W. Tee, and M. Najiah, Antibiogram and heavy metal tolerance of
Bullfrog Bacteria in Malaysia. Open Vet. J., vol. 1, 2011, pp. 39-45.
[10] P.R. Murray, E. J. Baron, M.A. Pfaller, F.C. Tenover, and R.H. Yolken,
Manual of clinical microbiology (7thed.). Washington, D.C.: American
Society for Microbiology. 1999.
[11] A. E. Magurran, Ecological Diversity and Its Measurement. Princeton,
NJ, USA: Princeton University Press. 1988.
[12] Ø. Hammer, D. A. T. Harper, and P. D. Ryan, PAST: Paleontological
statistics software package for education and data analysis. Palaeontol.
Electron., vol. 4, no. 1, 2001, pp. 9.
[13] R. Real, M. Vargasj, and O. C. Guerrrerj Análisis biogeográfico de
clasificación de áreas y de especies. In: Objetivos y métodos
biogeográfiC OSA. plicaciones en Herpetología. Monogr. Herpetol.,
vol. 2, 1992, pp. 73-84 (J. M. Vargas, R. Real & A. Antúnez, Eds.).
Asociación Herpetológica Española, Valencia.
[14] A. W. Bauer, W. M. M. Kirby, J. C. Sherris, and M. Turck, Antibiotic
susceptibility testing by a standardized single-disk method. Am. J. Clin.
Pathol., vol. 45, 1966, pp. 493–496.
[15] Clinical and Laboratory Standard Institute (CLSI). Performance
standards for antimicrobial disk susceptibility tests. NCCLS Document
M2-A7. National Committee for Clinical Laboratory Standards, 27(1),
Wayne, 2009.
[16] F. Matyar, O. Gulnaz, G. Guzeldag, H. A. Mercimek, S. Akturk, A.
Arkut, and M. Sumengen, Antibiotic and heavy metal resistance in
Gram-negative bacteria isolated from the Seyhan Dam Lake and Seyhan
River in Turkey. Ann Microbiol, vol. 64, 2014, pp. 1033–1040.
[17] P. H. Krumpermann, Multiple antibiotic resistances indexing of E. coli
to identify high-risk sources of fecal contamination of foods. Appl.
Environ. Microbiol., vol. 46, no. 1, 1983, pp. 165–170.
[18] N. Hacioglu, B. Dulger, T. Çaprazlı, and M.Tosunoglu, A Study on
microflora in oral and cloacal of freshwater turtles (Emys orbicularis
Linnaeus, 1758 and Mauremys rivulata Valenciennes, 1833) from
Kavak Delta (CANAKKALE). Fresen. Environ. Bull., vol. 21, no. 11b,
2012, pp. 3365-3369.
[19] N. Hacioglu, and M. Tosunoglu, Determination of antimicrobial and
heavy metal resistance profiles of some bacteria isolated from aquatic
amphibian and reptile species. Environ. Monit. Assess., vol. 186, 2014,
pp. 407-413.
[20] M. Najiah, S.W. Lee, and K.L. Lee, Phenotypic characterization and
numerical analysis of Edwardsiella tarda in wild Asian Swamp Eel,
Monopterus albus in Terengganu. J. Sustainable Manage, vol. 1, no. 1,
2006, pp. 85-91.
[21] C.J. Gonzalez, J.P. Encinas, M.L. Garcia-Lopez, and A. Otero,
Characterization and identification of lactic acid bacteria from
freshwater fishes, Food Microbiol, vol. 17, 2000, pp. 383-391.
[22] E.J. Goldstein, E.O. Agyare, A.E. Vagvolgyi, and M. Halpern, Aerobic
bacterial oral flora of garter snakes: Development of normal flora and
pathogenic potential for snakes and humans. J. Clin. Microbiol., vol.13,
no.5, 1981, pp. 954-956.
[23] C.Soccini, and V. Ferri, Bacteriological of Trachemys scripta elegans
and Emys orbicularis in the Pop plain (Italy). Biologia, Bratislava, vol.
59/Suppl., no.14, 2004, pp. 201-207.
[24] S.W. Lee, M. Najiah, W. Wendy, M. Nadirah, and S.H. Faizah,
Occurence of heavy metals and antibiotic resistance in bacteria from
intestinal organs of American bullfrog (Rana catesbeiana) raised in
Malaysia. J. Venom Anim. Toxins including Tropical Diseases, vol. 15,
no. 2, 2009, pp. 353–358.
[25] D.H. Nies, Microbial heavy metal resistance. Appl. Microbiol. Biotech,
vol. 51, 1999, pp. 730–750.