A Tubular Electrode for Radiofrequency Ablation Therapy

In the last two decades radiofrequency ablation (RFA) has been considered a promising medical procedure for the treatment of primary and secondary malignancies. However, the needle-based electrodes so far developed for this kind of treatment are not suitable for the thermal ablation of tumors located in hollow organs like esophagus, colon or bile duct. In this work a tubular electrode solution is presented. Numerical and experimental analyses were performed to characterize the volume of the lesion induced. Results show that this kind of electrode is a feasible solution and numerical simulation might provide a tool for planning RFA procedure with some accuracy.




References:
[1] J. Ferlay, et al. (2010, June 5th). GLOBOCAN 2008, Cancer Incidence
and Mortality Worldwide: IARC CancerBase No. 10 [Internet].
Available: http://globocan.iarc.fr/
[2] J. S├║arez, et al., "Stent or surgery for incurable obstructive colorectal
cancer: an individualized decisi├│n," International Journal of Colorectal
Disease, vol. 25, pp. 91-96, 2010.
[3] M. Burstow, et al., "Outcome of palliative esophageal stenting for
malignant dysphagia: a retrospective analysis," Diseases of the
Esophagus, vol. 22, pp. 519-525, 2009.
[4] W. H. Paik, et al., "Palliative treatment with self-expandable metallic
stents in patients with advanced type III or IV hilar cholangiocarcinoma:
a percutaneous versus endoscopic approach," Gastrointestinal
Endoscopy, vol. 69, pp. 55-62, 2009.
[5] D. Stoeckel, et al., "Self-expanding nitinol stents: material and design
considerations," European Radiology, vol. 14, pp. 292-301, 2004.
[6] B. Thierry, et al., "Nitinol versus stainless steel stents: acute
thrombogenicity study in an ex vivo porcine model," Biomaterials, vol.
23, pp. 2997-3005, 2002.
[7] A. P. O'Rourke, et al., "Current status of liver tumor ablation devices,"
Expert Review of Medical Devices, vol. 4, pp. 523-537, July 2007 2007.
[8] G. S. Gazelle, et al., "Tumor Ablation with Radio-frequency Energy,"
Radiology, vol. 217, pp. 633-646, December 1, 2000 2000.
[9] Y. Ni, et al., "A review of the general aspects of radiofrequency
ablation," Abdominal Imaging, vol. 30, pp. 381-400, August 2005 2005.
[10] C. F. L. Antunes, et al., "Thermal Ablation in Biological Tissue Using
Tubular Electrode," in 14th Biennial IEEE Conference on
Electromagnetic Field Computation, Chicago, USA, 2010.
[11] Valleylab, "Cool-tip™ System Technical Specifications," 2004.
[12] H. H. Pennes, "Analysis of Tissue and Arterial Blood Temperatures in
the Resting Human Forearm," Journal of Applied Physiololy, vol. 85, pp.
5-34, July 1, 1998.
[13] R. Plonsey and D. Heppner, "Considerations of quasi-stationarity in
electrophysiological systems," Bulletin of Mathematical Biology, vol. 29,
pp. 657-664, 1967.
[14] D. Haemmerich, et al., "Hepatic bipolar radio-frequency ablation
between separated multiprong electrodes," IEEE Transactions on
Biomedical Engineering, vol. 48, pp. 1145-1152, 2001.
[15] D. Haemmerich, et al., "Hepatic radiofrequency ablation with internally
cooled probes: effect of coolant temperature on lesion size," IEEE
Transactions on Biomedical Engineering, vol. 50, pp. 493-500, April
2003 2003.
[16] S. N. Goldberg, "Radiofrequency tumor ablation: principles and
techniques," European Journal of Ultrasound, vol. 13, pp. 129-147,
2001.