A Rapid and Cost-Effective Approach to Manufacturing Modeling Platform for Fused Deposition Modeling

This study presents a cost-effective approach for rapid
fabricating modeling platforms utilized in fused deposition modeling
system. A small-batch production of modeling platforms about 20
pieces can be obtained economically through silicone rubber mold
using vacuum casting without applying the plastic injection molding.
The air venting systems is crucial for fabricating modeling platform
using vacuum casting. Modeling platforms fabricated can be used for
building rapid prototyping model after sandblasting. This study offers
industrial value because it has both time-effectiveness and
cost-effectiveness.





References:
[1] C. C. Kuo, Y. C. Tsou, B. C. Chen, Materialwiss. Werkstofftech. 2012,
vol. 43, pp. 234.
[2] C. C. Kuo, Y. C. Tsou, Materialwiss. Werkstofftech. 2012, vol. 43, pp.
886.
[3] O. S. Es-Said, J. Foyos, R. Noorani, M. Mendelson, R. Marloth, B. A.
Pregger, Mater. Manuf. Process. 2000, vol. 15, pp. 107.
[4] M. Laub, H. P. Jennissen, T. Seul, E. Schmachtenberg, Materialwiss.
Werkstofftech. 2012, vol. 32, pp. 926.
[5] C. C. Kuo, S. J. Su, Materialwiss. Werkstofftech. 2013, vol. 44, pp. 330.
[6] D. Ahn, J. H. Kweon, S. Kwon, J. Song, S. Lee, J. Mater. Process.
Technol. 2009, 209, 5593.
[7] Y. Yang, J. Y. H. Fuh, H. T. Loh, Y. S. Wong, J. Manuf. Syst. 2003, vol.
22, pp. 116.
[8] S. H. Masood, W. Q. Song, Mater. Des. 2004, vol. 25, pp. 587.
[9] J. W. Choi, F. Medina, C. Kim, D. Espalin, D. Rodriguez, B. Stucker, R.
Wicker, J. Mater. Process. Technol. 2011, 211, 424.
[10] B.C.Tellis, J.A. Szivek, C.L. Bliss, D.S. Margolis, R.K. Vaidyanathan, P.
Calvert, Mater. Sci. Eng. C-Mater. Biol. Appl. 2008, vol. 28, pp. 171.
[11] P.M. Gronet, G. A. Waskewicz, C. Richardson, J. Prosthet. Dent. 2003,
vol. 90, pp. 429.
[12] Y. Tang, W.K. Tan, J.Y.H. Fuh, H.T. Loh, Y.S. Wong, S.C.H. Thian, L.
Lu, J. Mater. Process. Technol. 2007, 192-193, 334.
[13] D. Karalekas, K. Antoniou, J. Mater. Process. Technol. 2004, 153-154,
526.
[14] C. C. Kuo, Z. S. Shi, Indian J. Eng. Mat. Sci. 2012, vol. 19, pp. 157.
[15] C. C. Kuo, Mater. Manuf. Process. 2012, vol. 27, pp. 383.
[16] C. C. Kuo, Z. Y. Lin, Materialwiss. Werkstofftech. 2012, vol. 43, pp. 495.
[17] C. C. Kuo, M. Y. Lai, Indian J. Eng. Mat. Sci. 2011, vol. 18, pp. 405.
[18] C. C. Kuo, Indian J. Eng. Mat. Sci. 2013, vol. 20, pp. 245.
[19] S. Chung, Y. Im, H. Kim, H. Jeong, D. A. Dornfeld, Int. J. Mach. Tools
Manuf. 2003, vol. 43, pp. 1337.
[20] G. Fu, N. H. Loh, S. B. Tor, Y. Murakoshi and R. Maeda, Mater. Manuf.
Process. 2005, vol. 20, pp. 977.
[21] P. Selvakumar and N. Bhatnagar, Mater. Manuf. Process. 2009, vol. 24,
533.
[22] N. S. Ong, H. Zhang and W. H. Woo, Mater. Manuf. Process. 2006, vol.
21, pp. 824.
[23] M. Azuddin, T. Zahari and I. A. Choudhury, Mater. Manuf. Process.
2011, vol. 26, pp. 255.
[24] J. Zhou, N. Ai, L. Wang, H. Zheng, C. Luo, Z. Jiang, S. Yu, Y. Cao, J.
Wang Org. Electron. 2011, vol. 12, pp. 648.
[25] Z. Shayfull, S. Sharif, Azlan Mohd Zain, R. Mohd Saad , M. A. Fairuz,
Mater. Manuf. Process. 2013, vol. 28, pp. 884.