Optimal Sizing of a Hybrid Wind/PV Plant Considering Reliability Indices

The utilization of renewable energy sources in electric power systems is increasing quickly because of public apprehensions for unpleasant environmental impacts and increase in the energy costs involved with the use of conventional energy sources. Despite the application of these energy sources can considerably diminish the system fuel costs, they can also have significant influence on the system reliability. Therefore an appropriate combination of the system reliability indices level and capital investment costs of system is vital. This paper presents a hybrid wind/photovoltaic plant, with the aim of supplying IEEE reliability test system load pattern while the plant capital investment costs is minimized by applying a hybrid particle swarm optimization (PSO) / harmony search (HS) approach, and the system fulfills the appropriate level of reliability.

A Study on the Application of TRIZ to CAD/CAM System

This study created new graphical icons and operating functions in a CAD/CAM software system by analyzing icons in some of the popular systems, such as AutoCAD, AlphaCAM, Mastercam and the 1st edition of LiteCAM. These software systems all focused on geometric design and editing, thus how to transmit messages intuitively from icon itself to users is an important function of graphical icons. The primary purpose of this study is to design innovative icons and commands for new software. This study employed the TRIZ method, an innovative design method, to generate new concepts systematically. Through literature review, it then investigated and analyzed the relationship between TRIZ and idea development. Contradiction Matrix and 40 Principles were used to develop an assisting tool suitable for icon design in software development. We first gathered icon samples from the selected CAD/CAM systems. Then grouped these icons by meaningful functions, and compared useful and harmful properties. Finally, we developed new icons for new software systems in order to avoid intellectual property problem.

Arriving at an Optimum Value of Tolerance Factor for Compressing Medical Images

Medical imaging uses the advantage of digital technology in imaging and teleradiology. In teleradiology systems large amount of data is acquired, stored and transmitted. A major technology that may help to solve the problems associated with the massive data storage and data transfer capacity is data compression and decompression. There are many methods of image compression available. They are classified as lossless and lossy compression methods. In lossy compression method the decompressed image contains some distortion. Fractal image compression (FIC) is a lossy compression method. In fractal image compression an image is coded as a set of contractive transformations in a complete metric space. The set of contractive transformations is guaranteed to produce an approximation to the original image. In this paper FIC is achieved by PIFS using quadtree partitioning. PIFS is applied on different images like , Ultrasound, CT Scan, Angiogram, X-ray, Mammograms. In each modality approximately twenty images are considered and the average values of compression ratio and PSNR values are arrived. In this method of fractal encoding, the parameter, tolerance factor Tmax, is varied from 1 to 10, keeping the other standard parameters constant. For all modalities of images the compression ratio and Peak Signal to Noise Ratio (PSNR) are computed and studied. The quality of the decompressed image is arrived by PSNR values. From the results it is observed that the compression ratio increases with the tolerance factor and mammogram has the highest compression ratio. The quality of the image is not degraded upto an optimum value of tolerance factor, Tmax, equal to 8, because of the properties of fractal compression.

CFD Simulation and Validation of Flap Type Wave-Maker

A general purpose viscous flow solver Ansys CFX was used to solve the unsteady three-dimensional (3D) Reynolds Averaged Navier-Stokes Equation (RANSE) for simulating a 3D numerical viscous wave tank. A flap-type wave generator was incorporated in the computational domain to generate the desired incident waves. Authors have made effort to study the physical behaviors of Flap type wave maker with governing parameters. Dependency of the water fill depth, Time period of oscillations and amplitude of oscillations of flap were studied. Effort has been made to establish relations between parameters. A validation study was also carried out against CFD methodology with wave maker theory. It has been observed that CFD results are in good agreement with theoretical results. Beaches of different slopes were introduced to damp the wave, so that it should not cause any reflection from boundary. As a conclusion this methodology can simulate the experimental wave-maker for regular wave generation for different wave length and amplitudes.

Efficient Dimensionality Reduction of Directional Overcurrent Relays Optimal Coordination Problem

Directional over current relays (DOCR) are commonly used in power system protection as a primary protection in distribution and sub-transmission electrical systems and as a secondary protection in transmission systems. Coordination of protective relays is necessary to obtain selective tripping. In this paper, an approach for efficiency reduction of DOCRs nonlinear optimum coordination (OC) is proposed. This was achieved by modifying the objective function and relaxing several constraints depending on the four constraints classification, non-valid, redundant, pre-obtained and valid constraints. According to this classification, the far end fault effect on the objective function and constraints, and in consequently on relay operating time, was studied. The study was carried out, firstly by taking into account the near-end and far-end faults in DOCRs coordination problem formulation; and then faults very close to the primary relays (nearend faults). The optimal coordination (OC) was achieved by simultaneously optimizing all variables (TDS and Ip) in nonlinear environment by using of Genetic algorithm nonlinear programming techniques. The results application of the above two approaches on 6-bus and 26-bus system verify that the far-end faults consideration on OC problem formulation don-t lose the optimality.

[Ca(2,2'-bipyridine)3]2+ -Montmorillonite: A Potentiometric Sensor for Sulfide ion

Sulfide ion (S2-) is one of the most important ions to be monitored due to its high toxicity, especially for aquatic organisms. In this work, [Ca(2,2'-bipyridine)3]2+-intercalated montmorillonite was prepared and used as a sensor to construct a potentiometric electrode to measure sulfide ion in solution. The formation of [Ca(2,2'- bipyridine)3]2+ in montmorillonite was confirmed by Fourier Transform Infrared spectra. The electrode worked well at pH 4-12 and 4-10 in sulfide solution 10-2 M and 10-3 M, respectively, in terms of Nernstian slope. The sensor gave good precision and low cost.

Economic Evaluations Using Genetic Algorithms to Determine the Territorial Impact Caused by High Speed Railways

The evolution of technology and construction techniques has enabled the upgrading of transport networks. In particular, the high-speed rail networks allow convoys to peak at above 300 km/h. These structures, however, often significantly impact the surrounding environment. Among the effects of greater importance are the ones provoked by the soundwave connected to train transit. The wave propagation affects the quality of life in areas surrounding the tracks, often for several hundred metres. There are substantial damages to properties (buildings and land), in terms of market depreciation. The present study, integrating expertise in acoustics, computering and evaluation fields, outlines a useful model to select project paths so as to minimize the noise impact and reduce the causes of possible litigation. It also facilitates the rational selection of initiatives to contain the environmental damage to the already existing railway tracks. The research is developed with reference to the Italian regulatory framework (usually more stringent than European and international standards) and refers to a case study concerning the high speed network in Italy.

Some Relationships between Classes of Reverse Watson-Crick Finite Automata

A Watson-Crick automaton is recently introduced as a computational model of DNA computing framework. It works on tapes consisting of double stranded sequences of symbols. Symbols placed on the corresponding cells of the double-stranded sequences are related by a complimentary relation. In this paper, we investigate a variation of Watson-Crick automata in which both heads read the tape in reverse directions. They are called reverse Watson-Crick finite automata (RWKFA). We show that all of following four classes, i.e., simple, 1-limited, all-final, all-final and simple, are equal to non-restricted version of RWKFA.

Identification, Prediction and Detection of the Process Fault in a Cement Rotary Kiln by Locally Linear Neuro-Fuzzy Technique

In this paper, we use nonlinear system identification method to predict and detect process fault of a cement rotary kiln. After selecting proper inputs and output, an input-output model is identified for the plant. To identify the various operation points in the kiln, Locally Linear Neuro-Fuzzy (LLNF) model is used. This model is trained by LOLIMOT algorithm which is an incremental treestructure algorithm. Then, by using this method, we obtained 3 distinct models for the normal and faulty situations in the kiln. One of the models is for normal condition of the kiln with 15 minutes prediction horizon. The other two models are for the two faulty situations in the kiln with 7 minutes prediction horizon are presented. At the end, we detect these faults in validation data. The data collected from White Saveh Cement Company is used for in this study.

Framework for Delivery Reliability in European Machinery and Equipment Industry

Today-s manufacturing companies are facing multiple and dynamic customer-supplier-relationships embedded in nonhierarchical production networks. This complex environment leads to problems with delivery reliability and wasteful turbulences throughout the entire network. This paper describes an operational model based on a theoretical framework which improves delivery reliability of each individual customer-supplier-relationship within non-hierarchical production networks of the European machinery and equipment industry. By developing a non-centralized coordination mechanism based on determining the value of delivery reliability and derivation of an incentive system for suppliers the number of in time deliveries can be increased and thus the turbulences in the production network smoothened. Comparable to an electronic stock exchange the coordination mechanism will transform the manual and nontransparent process of determining penalties for delivery delays into an automated and transparent market mechanism creating delivery reliability.

The Diameter of an Interval Graph is Twice of its Radius

In an interval graph G = (V,E) the distance between two vertices u, v is de£ned as the smallest number of edges in a path joining u and v. The eccentricity of a vertex v is the maximum among distances from all other vertices of V . The diameter (δ) and radius (ρ) of the graph G is respectively the maximum and minimum among all the eccentricities of G. The center of the graph G is the set C(G) of vertices with eccentricity ρ. In this context our aim is to establish the relation ρ = δ 2  for an interval graph and to determine the center of it.

Inconsistency Discovery in Multiple State Diagrams

In this article, we introduce a new approach for analyzing UML designs to detect the inconsistencies between multiple state diagrams and sequence diagrams. The Super State Analysis (SSA) identifies the inconsistencies in super states, single step transitions, and sequences. Because SSA considers multiple UML state diagrams, it discovers inconsistencies that cannot be discovered when considering only a single UML state diagram. We have introduced a transition set that captures relationship information that is not specifiable in UML diagrams. The SSA model uses the transition set to link transitions of multiple state diagrams together. The analysis generates three different sets automatically. These sets are compared to the provided sets to detect the inconsistencies. SSA identifies five types of inconsistencies: impossible super states, unreachable super states, illegal transitions, missing transitions, and illegal sequences.

Effects of Natural Frequency and Rotational Speed on Dynamic Stress in Spur Gear

Natural frequencies and dynamic response of a spur gear sector are investigated using a two dimensional finite element model that offers significant advantages for dynamic gear analyses. The gear teeth are analyzed for different operating speeds. A primary feature of this modeling is determination of mesh forces using a detailed contact analysis for each time step as the gears roll through the mesh. Transient mode super position method has been used to find horizontal and vertical components of displacement and dynamic stress. The finite element analysis software ANSYS has been used on the proposed model to find the natural frequencies by Block Lanczos technique and displacements and dynamic stresses by transient mode super position method. A comparison of theoretical (natural frequency and static stress) results with the finite element analysis results has also been done. The effect of rotational speed of the gears on the dynamic response of gear tooth has been studied and design limits have been discussed.

Heat Transfer in a Parallel-Plate Enclosure with Graded-Index Coatings on its Walls

A numerical study on the heat transfer in the thermal barrier coatings and the substrates of a parallel-plate enclosure is carried out. Some of the thermal barrier coatings, such as ceramics, are semitransparent and are of interest for high-temperature applications where radiation effects are significant. The radiative transfer equations and the energy equations are solved by using the discrete ordinates method and the finite difference method. Illustrative results are presented for temperature distributions in the coatings and the opaque walls under various heating conditions. The results show that the temperature distribution is more uniform in the interior portion of each coating away from its boundary for the case with a larger average of varying refractive index and a positive gradient of refractive index enhances radiative transfer to the substrates.

Hydrodynamic Analysis of Reservoir Due to Vertical Component of Earthquake Using an Analytical Solution

This paper presents an analytical solution to get a reliable estimation of the hydrodynamic pressure on gravity dams induced by vertical component earthquake when solving the fluid and dam interaction problem. Presented analytical technique is presented for calculation of earthquake-induced hydrodynamic pressure in the reservoir of gravity dams allowing for water compressibility and wave absorption at the reservoir bottom. This new analytical solution can take into account the effect of bottom material on seismic response of gravity dams. It is concluded that because the vertical component of ground motion causes significant hydrodynamic forces in the horizontal direction on a vertical upstream face, responses to the vertical component of ground motion are of special importance in analysis of concrete gravity dams subjected to earthquakes.

The Core and Shapley Function for Games on Augmenting Systems with a Coalition Structure

In this paper, we first introduce the model of games on augmenting systems with a coalition structure, which can be seen as an extension of games on augmenting systems. The core of games on augmenting systems with a coalition structure is defined, and an equivalent form is discussed. Meantime, the Shapley function for this type of games is given, and two axiomatic systems of the given Shapley function are researched. When the given games are quasi convex, the relationship between the core and the Shapley function is discussed, which does coincide as in classical case. Finally, a numerical example is given.

The Relationship between Business-model Innovation and Firm Value: A Dynamic Perspective

When consistently innovative business-models can give companies a competitive advantage, longitudinal empirical research, which can reflect dynamic business-model changes, has yet to prove a definitive connection. This study consequently employs a dynamic perspective in conjunction with innovation theory to examine the relationship between the types of business-model innovation and firm value. This study tries to examine various types of business-model innovation in high-end and low-end technology industries such as HTC and the 7-Eleven chain stores with research periods of 14 years and 32 years, respectively. The empirical results suggest that adopting radical business-model innovation in addition to expanding new target markets can successfully lead to a competitive advantage. Sustained advanced technological competences and service/product innovation are the key successful factors in high-end and low-end technology industry business-models respectively. In sum up, the business-model innovation can yield a higher market value and financial value in high-end technology industries than low-end ones.

Technological Innovation Persistence Organizational Innovation Matters

Organizational innovation favors technological innovation, but does it also influence technological innovation persistence? This article investigates empirically the pattern of technological innovation persistence and tests the potential impact of organizational innovation using firm-level data from three waves of the French Community Innovation Surveys. Evidence shows a positive effect of organizational innovation on technological innovation persistence, according to various measures of organizational innovation. Moreover, this impact is more significant for complex innovators (i.e., those who innovate in both products and processes). These results highlight the complexity of managing organizational practices with regard to the firm-s technological innovation. They also add to comprehension of the drivers of innovation persistence, through a focus on an often forgotten dimension of innovation in a broader sense.

Probabilities and the Persistence of Memory in a Bingo-like Carnival Game

Seemingly simple probabilities in the m-player game bingo have never been calculated. These probabilities include expected game length and the expected number of winners on a given turn. The difficulty in probabilistic analysis lies in the subtle interdependence among the m-many bingo game cards in play. In this paper, the game i got it!, a bingo variant, is considered. This variation provides enough weakening of the inter-player dependence to allow probabilistic analysis not possible for traditional bingo. The probability of winning in exactly k turns is calculated for a one-player game. Given a game of m-many players, the expected game length and tie probability are calculated. With these calculations, the game-s interesting payout scheme is considered.