Modeling Football Penalty Shootouts: How Improving Individual Performance Affects Team Performance and the Fairness of the ABAB Sequence

Penalty shootouts often decide the outcome of important soccer matches. Although usually referred to as ”lotteries”, there is evidence that some national teams and clubs consistently perform better than others. The outcomes are therefore not explained just by mere luck, and therefore there are ways to improve the average performance of players, naturally at the expense of some sort of effort. In this article we study the payoff of player performance improvements in terms of the performance of the team as a whole. To do so we develop an analytical model with static individual performances, as well as Monte Carlo models that take into account the known influence of partial score and round number on individual performances. We find that within a range of usual values, the team performance improves above 70% faster than individual performances do. Using these models, we also estimate that the new ABBA penalty shootout ordering under test reduces almost all the known bias in favor of the first-shooting team under the current ABAB system.

Seismic Hazard Assessment of Offshore Platforms

This paper examines the effects of pile-soil-structure interaction on the dynamic response of offshore platforms under the action of near-fault earthquakes. Two offshore platforms models are investigated, one with completely fixed supports and one with piles which are clamped into deformable layered soil. The soil deformability for the second model is simulated using non-linear springs. These platform models are subjected to near-fault seismic ground motions. The role of fault mechanism on platforms’ response is additionally investigated, while the study also examines the effects of different angles of incidence of seismic records on the maximum response of each platform.

Comparison of Irradiance Decomposition and Energy Production Methods in a Solar Photovoltaic System

Installations of solar photovoltaic systems have increased considerably in the last decade. Therefore, it has been noticed that monitoring of meteorological data (solar irradiance, air temperature, wind velocity, etc.) is important to predict the potential of a given geographical area in solar energy production. In this sense, the present work compares two computational tools that are capable of estimating the energy generation of a photovoltaic system through correlation analyzes of solar radiation data: PVsyst software and an algorithm based on the PVlib package implemented in MATLAB. In order to achieve the objective, it was necessary to obtain solar radiation data (measured and from a solarimetric database), analyze the decomposition of global solar irradiance in direct normal and horizontal diffuse components, as well as analyze the modeling of the devices of a photovoltaic system (solar modules and inverters) for energy production calculations. Simulated results were compared with experimental data in order to evaluate the performance of the studied methods. Errors in estimation of energy production were less than 30% for the MATLAB algorithm and less than 20% for the PVsyst software.

The Current Home Hemodialysis Practices and Patients’ Safety Related Factors: A Case Study from Germany

The increasing costs of healthcare on one hand, and the rise in aging population and associated chronic disease, on the other hand, are putting increasing burden on the current health care system in many Western countries. For instance, chronic kidney disease (CKD) is a common disease and in Europe, the cost of renal replacement therapy (RRT) is very significant to the total health care cost. However, the recent advancement in healthcare technology, provide the opportunity to treat patients at home in their own comfort. It is evident that home healthcare offers numerous advantages apparently, low costs and high patients’ quality of life. Despite these advantages, the intake of home hemodialysis (HHD) therapy is still low in particular in Germany. Many factors are accounted for the low number of HHD intake. However, this paper is focusing on patients’ safety-related factors of current HHD practices in Germany. The aim of this paper is to analyze the current HHD practices in Germany and to identify risks related factors if any exist. A case study has been conducted in a dialysis center which consists of four dialysis centers in the south of Germany. In total, these dialysis centers have 350 chronic dialysis patients, of which, four patients are on HHD. The centers have 126 staff which includes six nephrologists and 120 other staff i.e. nurses and administration. The results of the study revealed several risk-related factors. Most importantly, these centers do not offer allied health services at the pre-dialysis stage, the HHD training did not have an established curriculum; however, they have just recently developed the first version. Only a soft copy of the machine manual is offered to patients. Surprisingly, the management was not aware of any standard available for home assessment and installation. The home assessment is done by a third party (i.e. the machines and equipment provider) and they may not consider the hygienic quality of the patient’s home. The type of machine provided to patients at home is similar to the one in the center. The model may not be suitable at home because of its size and complexity. Even though portable hemodialysis machines, which are specially designed for home use, are available in the market such as the NxStage series. Besides the type of machine, no assistance is offered for space management at home in particular for placing the machine. Moreover, the centers do not offer remote assistance to patients and their carer at home. However, telephonic assistance is available. Furthermore, no alternative is offered if a carer is not available. In addition, the centers are lacking medical staff including nephrologists and renal nurses.

Elastic and Plastic Collision Comparison Using Finite Element Method

The prevision of post-impact conditions and the behavior of the bodies during the impact have been object of several collision models. The formulation from Hertz’s theory is generally used dated from the 19th century. These models consider the repulsive force as proportional to the deformation of the bodies under contact and may consider it proportional to the rate of deformation. The objective of the present work is to analyze the behavior of the bodies during impact using the Finite Element Method (FEM) with elastic and plastic material models. The main parameters to evaluate are, the contact force, the time of contact and the deformation of the bodies. An advantage of using the FEM approach is the possibility to apply a plastic deformation to the model according to the material definition: there will be used Johnson–Cook plasticity model whose parameters are obtained through empirical tests of real materials. This model allows analyzing the permanent deformation caused by impact, phenomenon observed in real world depending on the forces applied to the body. These results are compared between them and with the model-based Hertz theory.

The Potential of Hybrid Microgrids for Mitigating Power Outage in Lebanon

Lebanon electricity crisis continues to escalate. Rationing hours still apply across the country but with different rates. The capital Beirut is subjected to 3 hours cut while other cities, town and villages may endure 9 to 14 hours of power shortage. To mitigate this situation, private diesel generators distributed illegally all over the country are being used to bridge the gap in power supply. Almost each building in large cities has its own generator and individual villages may have more than one generator supplying their loads. These generators together with their private networks form incomplete and ill-designed and managed microgrids (MG) but can be further developed to become renewable energy-based MG operating in island- or grid-connected modes. This paper will analyze the potential of introducing MG to help resolve the energy crisis in Lebanon. It will investigate the usefulness of developing MG under the prevailing situation of existing private power supply service providers and in light of the developed national energy policy that supports renewable energy development. A case study on a distribution feeder in a rural area will be analyzed using HOMER software to demonstrate the usefulness of introducing photovoltaic (PV) arrays along the existing diesel generators for all the stakeholders; namely, the developers, the customers, the utility and the community at large. Policy recommendations regarding MG development in Lebanon will be presented on the basis of the accumulated experience in private generation and the privatization and public-private partnership laws.

Diagnosis on Environmental Impacts of Tourism at Caju Beach in Palmas, Tocantins, Brazil

Environmental impacts are the changes in the physical, chemical or biological properties of natural areas that are most often caused by human actions on the environment and which have consequences for human health, society and the elements of nature. The identification of the environmental impacts is important so that they are mitigated, and above all that the mitigating measures are applied in the area. This work aims to identify the environmental impacts generated in the Praia do Caju area in the city of Palmas/Brazil and show that the lack of structure on the beach intensifies the environmental impacts. The present work was carried out having as parameter, the typologies of exploratory and descriptive and quantitative research through a matrix of environmental impacts through direct observation and registration. The study took place during the holidays from August to December 2016 and photographic record of impacts. From the collected data it was possible to verify that Caju beach suffers constant degradation due to irregular deposition.

Comparing the Efficiency of Simpson’s 1/3 and 3/8 Rules for the Numerical Solution of First Order Volterra Integro-Differential Equations

This paper compared the efficiency of Simpson’s 1/3 and 3/8 rules for the numerical solution of first order Volterra integro-differential equations. In developing the solution, collocation approximation method was adopted using the shifted Legendre polynomial as basis function. A block method approach is preferred to the predictor corrector method for being self-starting. Experimental results confirmed that the Simpson’s 3/8 rule is more efficient than the Simpson’s 1/3 rule.

Specific Emitter Identification Based on Refined Composite Multiscale Dispersion Entropy

The wireless communication network is developing rapidly, thus the wireless security becomes more and more important. Specific emitter identification (SEI) is an vital part of wireless communication security as a technique to identify the unique transmitters. In this paper, a SEI method based on multiscale dispersion entropy (MDE) and refined composite multiscale dispersion entropy (RCMDE) is proposed. The algorithms of MDE and RCMDE are used to extract features for identification of five wireless devices and cross-validation support vector machine (CV-SVM) is used as the classifier. The experimental results show that the total identification accuracy is 99.3%, even at low signal-to-noise ratio(SNR) of 5dB, which proves that MDE and RCMDE can describe the communication signal series well. In addition, compared with other methods, the proposed method is effective and provides better accuracy and stability for SEI.

Studies on the Characterization and Machinability of Duplex Stainless Steel 2205 during Dry Turning

The present investigation is a study of the effect of advanced Physical Vapor Deposition (PVD) coatings on cutting temperature residual stresses and surface roughness during Duplex Stainless Steel (DSS) 2205 turning. Austenite stabilizers like nickel, manganese, and molybdenum reduced the cost of DSS. Surface Integrity (SI) plays an important role in determining corrosion resistance and fatigue life. Resistance to various types of corrosion makes DSS suitable for applications with critical environments like Heat exchangers, Desalination plants, Seawater pipes and Marine components. However, lower thermal conductivity, poor chip control and non-uniform tool wear make DSS very difficult to machine. Cemented carbide tools (M grade) were used to turn DSS in a dry environment. AlTiN and AlTiCrN coatings were deposited using advanced PVD High Pulse Impulse Magnetron Sputtering (HiPIMS) technique. Experiments were conducted with cutting speed of 100 m/min, 140 m/min and 180 m/min. A constant feed and depth of cut of 0.18 mm/rev and 0.8 mm were used, respectively. AlTiCrN coated tools followed by AlTiN coated tools outperformed uncoated tools due to properties like lower thermal conductivity, higher adhesion strength and hardness. Residual stresses were found to be compressive for all the tools used for dry turning, increasing the fatigue life of the machined component. Higher cutting temperatures were observed for coated tools due to its lower thermal conductivity, which results in very less tool wear than uncoated tools. Surface roughness with uncoated tools was found to be three times higher than coated tools due to lower coefficient of friction of coating used.

In vitro Study of Laser Diode Radiation Effect on the Photo-Damage of MCF-7 and MCF-10A Cell Clusters

Breast Cancer is one of the most considerable diseases in the United States and other countries and is the second leading cause of death in women. Common breast cancer treatments would lead to adverse side effects such as loss of hair, nausea, and weakness. These complications arise because these cancer treatments damage some healthy cells while eliminating the cancer cells. In an effort to address these complications, laser radiation was utilized and tested as a targeted cancer treatment for breast cancer. In this regard, tissue engineering approaches are being employed by using an electrospun scaffold in order to facilitate the growth of breast cancer cells. Polycaprolacton (PCL) was used as a material for scaffold fabricating because of its biocompatibility, biodegradability, and supporting cell growth. The specific breast cancer cells have the ability to create a three-dimensional cell cluster due to the spontaneous accumulation of cells in the porosity of the scaffold under some specific conditions. Therefore, we are looking for a higher density of porosity and larger pore size. Fibers showed uniform diameter distribution and final scaffold had optimum characteristics with approximately 40% porosity. The images were taken by SEM and the density and the size of the porosity were determined with the Image. After scaffold preparation, it has cross-linked by glutaraldehyde. Then, it has been washed with glycine and phosphate buffer saline (PBS), in order to neutralize the residual glutaraldehyde. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromidefor (MTT) results have represented approximately 91.13% viability of the scaffolds for cancer cells. In order to create a cluster, Michigan Cancer Foundation-7 (MCF-7, breast cancer cell line) and Michigan Cancer Foundation-10A (MCF-10A, human mammary epithelial cell line) cells were cultured on the scaffold in 24 well plate for five days. Then, we have exposed the cluster to the laser diode 808 nm radiation to investigate the effect of laser on the tumor with different power and time. Under the same conditions, cancer cells lost their viability more than the healthy ones. In conclusion, laser therapy is a viable method to destroy the target cells and has a minimum effect on the healthy tissues and cells and it can improve the other method of cancer treatments limitations.

Characteristics of the Long-Term Regional Tourism Development in Georgia

Tourism industry development is one of the key priorities in Georgia, as it has positive influence on economic activities. Its contribution is very important for the different regions, as well as for the national economy. Benefits of the tourism industry include new jobs, service development, and increasing tax revenues, etc. The main aim of this research is to review and analyze the potential of the Georgian tourism industry with its long-term strategy and current challenges. To plan activities in a long-term development, it is required to evaluate several factors on the regional and on the national level. Factors include activities, transportation, services, lodging facilities, infrastructure and institutions. The major research contributions are practical estimates about regional tourism development which plays an important role in the integration process with global markets.

Institutional Determinants of Economic Growth in Georgia and in Other Post-Communist Economies

The institutional development is one of the actual topics in economics science. New trends and directions of institutional development mostly depend on its structure and framework. Transformation of institutions is an important problem for every economy, especially for developing countries. The first research goal is to determine the importance and interactions between different institutions in Georgia. Using World Governance Indicators and Economic Freedom indexes it can be calculated the size for each institutional group. The second aim of this research is to evaluate Georgian institutional backwardness in comparison to other post-communist economies. We use statistical and econometric methods to evaluate the difference between the levels of institutional development in Georgia and in leading post-communist economies. Within the scope of this research, major findings are coefficients which are an assessment of their deviation (i.e. lag) of institutional indicators between Georgia and leading post-communist country which should be compared. The last part of the article includes analysis around the selected coefficients.

“Protection” or “Destruction”: Taking the Cultural Heritage Protection of the Grand Canal in Huaxian and Xunxian Sections of Henan Province as Example

The Grand Canal of China has been in use for more than two thousand years. It runs through the central and eastern regions of China and communicates with the five major river systems of Haihe River, Yellow River, Huaihe River, Yangtze River and Qiantang River from north to south. It is a complex, systematic and comprehensive water conservancy project in the period of agricultural civilization and includes the three parts of the Beijing-Hangzhou Canal, the Sui and Tang Dynasties Canal and the Eastern Zhejiang Canal. It covers eight provinces and cities including Beijing, Tianjin, Hebei, Shandong, Jiangsu, Zhejiang, Henan and Anhui. The Grand Canal is an important channel connecting the Central Plains and the Beijing-Hangzhou Canal, and it is also an important waterway trade channel. Nowadays, although the Grand Canal no longer bears the burden of communicating water transportation between the north and the south, the site of the Grand Canal is still a “historical museum” of the lifestyle of people who lived on the canal from the Ming and Qing Dynasties to the Republic of China. By means of literature reading and field investigation, this paper compares the different protection strategies of the Grand Canal in the region between the ancient villages of Huaxian and Xunxian, which witness the vicissitudes of canal water transport, to explore whether the protective renovation of historical and cultural routes is “protection” or “destruction”, and puts forward some protection suggestions.

Present Status, Driving Forces and Pattern Optimization of Territory in Hubei Province, China

“National Territorial Planning (2016-2030)” was issued by the State Council of China in 2017. As an important initiative of putting it into effect, territorial planning at provincial level makes overall arrangement of territorial development, resources and environment protection, comprehensive renovation and security system construction. Hubei province, as the pivot of the “Rise of Central China” national strategy, is now confronted with great opportunities and challenges in territorial development, protection, and renovation. Territorial spatial pattern experiences long time evolution, influenced by multiple internal and external driving forces. It is not clear what are the main causes of its formation and what are effective ways of optimizing it. By analyzing land use data in 2016, this paper reveals present status of territory in Hubei. Combined with economic and social data and construction information, driving forces of territorial spatial pattern are then analyzed. Research demonstrates that the three types of territorial space aggregate distinctively. The four aspects of driving forces include natural background which sets the stage for main functions, population and economic factors which generate agglomeration effect, transportation infrastructure construction which leads to axial expansion and significant provincial strategies which encourage the established path. On this basis, targeted strategies for optimizing territory spatial pattern are then put forward. Hierarchical protection pattern should be established based on development intensity control as respect for nature. By optimizing the layout of population and industry and improving the transportation network, polycentric network-based development pattern could be established. These findings provide basis for Hubei Territorial Planning, and reference for future territorial planning in other provinces.

Social Semantic Web-Based Analytics Approach to Support Lifelong Learning

The purpose of this paper is to describe how learning analytics approaches based on social semantic web techniques can be applied to enhance the lifelong learning experiences in a connectivist perspective. For this reason, a prototype of a system called SoLearn (Social Learning Environment) that supports this approach. We observed and studied literature related to lifelong learning systems, social semantic web and ontologies, connectivism theory, learning analytics approaches and reviewed implemented systems based on these fields to extract and draw conclusions about necessary features for enhancing the lifelong learning process. The semantic analytics of learning can be used for viewing, studying and analysing the massive data generated by learners, which helps them to understand through recommendations, charts and figures their learning and behaviour, and to detect where they have weaknesses or limitations. This paper emphasises that implementing a learning analytics approach based on social semantic web representations can enhance the learning process. From one hand, the analysis process leverages the meaning expressed by semantics presented in the ontology (relationships between concepts). From the other hand, the analysis process exploits the discovery of new knowledge by means of inferring mechanism of the semantic web.

MIMO Radar-Based System for Structural Health Monitoring and Geophysical Applications

The paper presents a methodology for real-time structural health monitoring and geophysical applications. The key elements of the system are a high performance MIMO RADAR sensor, an optical camera and a dedicated set of software algorithms encompassing interferometry, tomography and photogrammetry. The MIMO Radar sensor proposed in this work, provides an extremely high sensitivity to displacements making the system able to react to tiny deformations (up to tens of microns) with a time scale which spans from milliseconds to hours. The MIMO feature of the system makes the system capable of providing a set of two-dimensional images of the observed scene, each mapped on the azimuth-range directions with noticeably resolution in both the dimensions and with an outstanding repetition rate. The back-scattered energy, which is distributed in the 3D space, is projected on a 2D plane, where each pixel has as coordinates the Line-Of-Sight distance and the cross-range azimuthal angle. At the same time, the high performing processing unit allows to sense the observed scene with remarkable refresh periods (up to milliseconds), thus opening the way for combined static and dynamic structural health monitoring. Thanks to the smart TX/RX antenna array layout, the MIMO data can be processed through a tomographic approach to reconstruct the three-dimensional map of the observed scene. This 3D point cloud is then accurately mapped on a 2D digital optical image through photogrammetric techniques, allowing for easy and straightforward interpretations of the measurements. Once the three-dimensional image is reconstructed, a 'repeat-pass' interferometric approach is exploited to provide the user of the system with high frequency three-dimensional motion/vibration estimation of each point of the reconstructed image. At this stage, the methodology leverages consolidated atmospheric correction algorithms to provide reliable displacement and vibration measurements.

Proton Radius Calculation for Muonic Hydrogen 2S-2P Transition Experiment

Scientists are making attempts to solve proton radius puzzle. In this paper, the calculated value matches the experiment observation within 0.1%, compared to those obtained from CODATA, and muonic hydrogen scattering experiments of 4%. The calculation is made based on the assumption that the muonic hydrogen system has (Ep – Eµ) energy state (or frequency mix state of np –nµ), which interacts resonantly with the incoming photon of energy 206.2949(32) meV. A similar calculation is also made for muonic deuterium 2S-2P transition experiment with an accuracy of 1% from the experimental observation. The paper has also explored the theoretical as well as experimentation advancements that have led towards the development of results with lesser deviations.

High Speed Rail vs. Other Factors Affecting the Tourism Market in Italy

The objective of this paper is to investigate the relationship between the increase of accessibility brought by high speed rail (HSR) systems and the tourism market in Italy. The impacts of HSR projects on tourism can be quantified in different ways. In this manuscript, an empirical analysis has been carried out with the aid of a dataset containing information both on tourism and transport for 99 Italian provinces during the 2006-2016 period. Panel data regression models have been considered, since they allow modelling a wide variety of correlation patterns. Results show that HSR has an impact on the choice of a given destination for Italian tourists while the presence of a second level hub mainly affects foreign tourists. Attraction variables are also significant for both categories and the variables concerning security, such as number of crimes registered in a given destination, have a negative impact on the choice of a destination.

Context Aware Anomaly Behavior Analysis for Smart Home Systems

The Internet of Things (IoT) will lead to the development of advanced Smart Home services that are pervasive, cost-effective, and can be accessed by home occupants from anywhere and at any time. However, advanced smart home applications will introduce grand security challenges due to the increase in the attack surface. Current approaches do not handle cybersecurity from a holistic point of view; hence, a systematic cybersecurity mechanism needs to be adopted when designing smart home applications. In this paper, we present a generic intrusion detection methodology to detect and mitigate the anomaly behaviors happened in Smart Home Systems (SHS). By utilizing our Smart Home Context Data Structure, the heterogeneous information and services acquired from SHS are mapped in context attributes which can describe the context of smart home operation precisely and accurately. Runtime models for describing usage patterns of home assets are developed based on characterization functions. A threat-aware action management methodology, used to efficiently mitigate anomaly behaviors, is proposed at the end. Our preliminary experimental results show that our methodology can be used to detect and mitigate known and unknown threats, as well as to protect SHS premises and services.