Effect of Exercise on Sexual Behavior and Semen Quality of Sahiwal Bulls

The study was conducted on Sahiwal cattle bulls maintained at the Artificial Breeding Complex, NDRI, Karnal, Hayana, India, to determine the effect of exercise on the sexual behavior and semen quality. Fourteen Sahiwal bulls were classified into two groups of seven each. Group-1, bulls were exercised by walking in a bull exerciser once a week one hour before semen collection, whereas bulls in group-2 were exercised daily. Sexual behavior and semen quality traits studied were: Reaction time (RT), Dismounting time (DMT), Total time taken in mounts (TTTM), Flehmen response (FR), Erection Score (ES), Protrusion Score (PS), Intensity of thrust (ITS), Temperament Score (TS), Libido Score (LS), Semen volume, Physical appearance, Mass activity, Initial progressive motility, Non-eosinophilic spermatozoa count (NESC) and post thaw motility percent. Data were analyzed by least squares technique. Group-2 showed significantly (p < 0.01) higher value in RT (sec), DMT (sec), TTTM (sec), ES, PS, ITS, LS, semen volume, semen color density and mass activity.

Augmented Reality Sandbox and Constructivist Approach for Geoscience Teaching and Learning

Augmented reality sandbox adds new dimensions to education and learning process. It can be a core component of geoscience teaching and learning to understand the geographic contexts and landform processes. Augmented reality sandbox is a useful tool not only to create an interactive learning environment through spatial visualization but also it can provide an active learning experience to students and enhances the cognition process of learning. Augmented reality sandbox can be used as an interactive learning tool to teach geomorphic and landform processes. This article explains the augmented reality sandbox and the constructivism approach for geoscience teaching and learning, and endeavours to explore the ways to teach the geographic processes using the three-dimensional digital environment for the deep learning of the geoscience concepts interactively.

Reliability Based Performance Evaluation of Stone Column Improved Soft Ground

The present study considers the effect of variation of different geotechnical random variables in the design of stone column-foundation systems for assessing the bearing capacity and consolidation settlement of highly compressible soil. The soil and stone column properties, spacing, diameter and arrangement of stone columns are considered as the random variables. Probability of failure (Pf) is computed for a target degree of consolidation and a target safe load by Monte Carlo Simulation (MCS). The study shows that the variation in coefficient of radial consolidation (cr) and cohesion of soil (cs) are two most important factors influencing Pf. If the coefficient of variation (COV) of cr exceeds 20%, Pf exceeds 0.001, which is unsafe following the guidelines of US Army Corps of Engineers. The bearing capacity also exceeds its safe value for COV of cs > 30%. It is also observed that as the spacing between the stone column increases, the probability of reaching a target degree of consolidation decreases. Accordingly, design guidelines, considering both consolidation and bearing capacity of improved ground, are proposed for different spacing and diameter of stone columns and geotechnical random variables.

Achieving Maximum Performance through the Practice of Entrepreneurial Ethics: Evidence from SMEs in Nigeria

It is acknowledged that small and medium enterprises (SMEs) may encounter different ethical issues and pressures that could affect the way in which they strategize or make decisions concerning the outcome of their business. Therefore, this research aimed at assessing entrepreneurial ethics in the business of SMEs in Nigeria. Secondary data were adopted as source of corpus for the analysis. The findings conclude that a sound entrepreneurial ethics system has a significant effect on the level of performance of SMEs in Nigeria. The Nigerian Government needs to provide both guiding and physical structures; as well as learning systems that could inculcate these entrepreneurial ethics.

Simulation of Ammonia-Water Two Phase Flow in Bubble Pump

The diffusion-absorption refrigeration cycle consists of a generator bubble pump, an absorber, an evaporator and a condenser, and usually operates with ammonia/water/ hydrogen or helium as the working fluid. The aim of this paper is to study the stability problem a bubble pump. In fact instability can caused a reduction of bubble pump efficiency. To achieve this goal, we have simulated the behaviour of two-phase flow in a bubble pump by using a drift flow model. Equations of a drift flow model are formulated in the transitional regime, non-adiabatic condition and thermodynamic equilibrium between the liquid and vapour phases. Equations resolution allowed to define void fraction, and liquid and vapour velocities, as well as pressure and mixing enthalpy. Ammonia-water mixing is used as working fluid, where ammonia mass fraction in the inlet is 0.6. Present simulation is conducted out for a heating flux of 2 kW/m² to 5 kW/m² and bubble pump tube length of 1 m and 2.5 mm of inner diameter. Simulation results reveal oscillations of vapour and liquid velocities along time. Oscillations decrease with time and with heat flux. For sufficient time the steady state is established, it is characterised by constant liquid velocity and void fraction values. However, vapour velocity does not have the same behaviour, it increases for steady state too. On the other hand, pressure drop oscillations are studied.

Improvement of Antibacterial Activity for Ceftazidime by Partially Purified Tannase from Penicillium expansum

Tannase has wide applications in food, beverage, brewing, cosmetics and chemical industries and one of the major applications of tannase is the production of gallic acid. Gallic acid is used for manufacturing of trimethoprim. In the present study, a local fungal strain of Penicillium expansum A4 isolated from spoilt apple samples gave the highest production level of tannase. Tannase was partially purified with a recovery yield of 92.52% and 6.32 fold of purification by precipitation using ammonium sulfate at 50% saturation. Tannase led to increased antimicrobial activity of ceftazidime against Pseudomonas aeruginosa and S. aureus and had a synergism effect at low concentrations of ceftazidime, and thus, tannase may be a useful adjuvant agent for the treatment of many bacterial infections in combination with ceftazidime.

Study on Clarification of the Core Technology in a Monozukuri Company

It is important to clarify the company’s core technology in product development process to strengthen their power in providing technology that meets the customer requirement. QFD method is adopted to clarify the core technology through identifying the high element technologies that are related to the voice of customer, and offer the most delightful features for customer. AHP is used to determine the importance of evaluating factors. A case study was conducted by using this approach in Japan’s Monozukuri Company (so called manufacturing company) to clarify their core technology based on customer requirements.

Forecasting Materials Demand from Multi-Source Ordering

The downstream manufactures will order their materials from different upstream suppliers to maintain a certain level of the demand. This paper proposes a bivariate model to portray this phenomenon of material demand. We use empirical data to estimate the parameters of model and evaluate the RMSD of model calibration. The results show that the model has better fitness.

Scour Depth Prediction around Bridge Piers Using Neuro-Fuzzy and Neural Network Approaches

The prediction of scour depth around bridge piers is frequently considered in river engineering. One of the key aspects in efficient and optimum bridge structure design is considered to be scour depth estimation around bridge piers. In this study, scour depth around bridge piers is estimated using two methods, namely the Adaptive Neuro-Fuzzy Inference System (ANFIS) and Artificial Neural Network (ANN). Therefore, the effective parameters in scour depth prediction are determined using the ANN and ANFIS methods via dimensional analysis, and subsequently, the parameters are predicted. In the current study, the methods’ performances are compared with the nonlinear regression (NLR) method. The results show that both methods presented in this study outperform existing methods. Moreover, using the ratio of pier length to flow depth, ratio of median diameter of particles to flow depth, ratio of pier width to flow depth, the Froude number and standard deviation of bed grain size parameters leads to optimal performance in scour depth estimation.

The High Strength Biocompatible Wires of Commercially Pure Titanium

COMTES FHT has been active in a field of research and development of high-strength wires for quite some time. The main material was pure titanium. The primary goal of this effort is to develop a continuous production process for ultrafine and nanostructured materials with the aid of severe plastic deformation (SPD). This article outlines mechanical and microstructural properties of the materials and the options available for testing the components made of these materials. Ti Grade 2 and Grade 4 wires are the key products of interest. Ti Grade 2 with ultrafine to nano-sized grain shows ultimate strength of up to 1050 MPa. Ti Grade 4 reaches ultimate strengths of up to 1250 MPa. These values are twice or three times as higher as those found in the unprocessed material. For those fields of medicine where implantable metallic materials are used, bulk ultrafine to nanostructured titanium is available. It is manufactured by SPD techniques. These processes leave the chemical properties of the initial material unchanged but markedly improve its final mechanical properties, in particular, the strength. Ultrafine to nanostructured titanium retains all the significant and, from the biological viewpoint, desirable properties that are important for its use in medicine, i.e. those properties which made pure titanium the preferred material also for dental implants.

Flexural Strength of Alkali Resistant Glass Textile Reinforced Concrete Beam with Prestressing

Due to the aging of bridges, increasing of maintenance costs and decreasing of structural safety is occurred. The steel corrosion of reinforced concrete bridge is the most common problem and this phenomenon is accelerating due to abnormal weather and increasing CO2 concentration due to climate change. To solve these problems, composite members using textile have been studied. A textile reinforced concrete can reduce carbon emissions by reduced concrete and without steel bars, so a lot of structural behavior studies are needed. Therefore, in this study, textile reinforced concrete beam was made and flexural test was performed. Also, the change of flexural strength according to the prestressing was conducted. As a result, flexural strength of TRC with prestressing was increased compared and flexural behavior was shown as reinforced concrete.

Lifting Wavelet Transform and Singular Values Decomposition for Secure Image Watermarking

In this paper, we present a technique of secure watermarking of grayscale and color images. This technique consists in applying the Singular Value Decomposition (SVD) in LWT (Lifting Wavelet Transform) domain in order to insert the watermark image (grayscale) in the host image (grayscale or color image). It also uses signature in the embedding and extraction steps. The technique is applied on a number of grayscale and color images. The performance of this technique is proved by the PSNR (Pick Signal to Noise Ratio), the MSE (Mean Square Error) and the SSIM (structural similarity) computations.

Ellagic Acid Enhanced Apoptotic Radiosensitivity via G1 Cell Cycle Arrest and γ-H2AX Foci Formation in HeLa Cells in vitro

Radiation therapy is an effective vital strategy used globally in the treatment of cervical cancer. However, radiation efficacy principally depends on the radiosensitivity of the tumor, and not all patient exhibit significant response to irradiation. A radiosensitive tumor is easier to cure than a radioresistant tumor which later advances to local recurrence and metastasis. Herbal polyphenols are gaining attention for exhibiting radiosensitization through various signaling. Current work focuses to study the radiosensitization effect of ellagic acid (EA), on HeLa cells. EA intermediated radiosensitization of HeLa cells was due to the induction γ-H2AX foci formation, G1 phase cell cycle arrest, and loss of reproductive potential, growth inhibition, drop in the mitochondrial membrane potential and protein expression studies that eventually induced apoptosis. Irradiation of HeLa in presence of EA (10 μM) to doses of 2 and 4 Gy γ-radiation produced marked tumor cytotoxicity. EA also demonstrated radio-protective effect on normal cell, NIH3T3 and aided recovery from the radiation damage. Our results advocate EA to be an effective adjuvant for improving cancer radiotherapy as it displays striking tumor cytotoxicity and reduced normal cell damage instigated by irradiation.

Exploration of Hydrocarbon Unconventional Accumulations in the Argillaceous Formation of the Autochthonous Miocene Succession in the Carpathian Foredeep

The article shows results of the project which aims at evaluating possibilities of effective development and exploitation of natural gas from argillaceous series of the Autochthonous Miocene in the Carpathian Foredeep. To achieve the objective, the research team develop a world-trend based but unique methodology of processing and interpretation, adjusted to data, local variations and petroleum characteristics of the area. In order to determine the zones in which maximum volumes of hydrocarbons might have been generated and preserved as shale gas reservoirs, as well as to identify the most preferable well sites where largest gas accumulations are anticipated a number of task were accomplished. Evaluation of petrophysical properties and hydrocarbon saturation of the Miocene complex is based on laboratory measurements as well as interpretation of well-logs and archival data. The studies apply mercury porosimetry (MICP), micro CT and nuclear magnetic resonance imaging (using the Rock Core Analyzer). For prospective location (e.g. central part of Carpathian Foredeep – Brzesko-Wojnicz area) reprocessing and reinterpretation of detailed seismic survey data with the use of integrated geophysical investigations has been made. Construction of quantitative, structural and parametric models for selected areas of the Carpathian Foredeep is performed on the basis of integrated, detailed 3D computer models. Modeling are carried on with the Schlumberger’s Petrel software. Finally, prospective zones are spatially contoured in a form of regional 3D grid, which will be framework for generation modelling and comprehensive parametric mapping, allowing for spatial identification of the most prospective zones of unconventional gas accumulation in the Carpathian Foredeep. Preliminary results of research works indicate a potentially prospective area for occurrence of unconventional gas accumulations in the Polish part of Carpathian Foredeep.

Effect of Nano-SiO2 Solution on the Strength Characteristics of Kaolinite

Today, with developments in science and technology, there is an excessive potential for the use of nanomaterials in various fields of geotechnical project such as soil stabilization. This study investigates the effect of Nano-SiO2 solution on the unconfined compression strength and Young's elastic modulus of Kaolinite. For this purpose, nano-SiO2 was mixed with kaolinite in five different contents: 1, 2, 3, 4 and 5% by weight of the dry soil and a series of the unconfined compression test with curing time of one-day was selected as laboratory test. Analyses of the tests results show that stabilization of kaolinite with Nano-SiO2 solution can improve effectively the unconfined compression strength of modified soil up to 1.43 times compared to  the pure soil.

Municipal Solid Waste Management Using Life Cycle Assessment Approach: Case Study of Maku City, Iran

This paper aims to determine the best environmental and economic scenario for Municipal Solid Waste (MSW) management of the Maku city by using Life Cycle Assessment (LCA) approach. The functional elements of this study are collection, transportation, and disposal of MSW in Maku city. Waste composition and density, as two key parameters of MSW, have been determined by field sampling, and then, the other important specifications of MSW like chemical formula, thermal energy and water content were calculated. These data beside other information related to collection and disposal facilities are used as a reliable source of data to assess the environmental impacts of different waste management options, including landfills, composting, recycling and energy recovery. The environmental impact of MSW management options has been investigated in 15 different scenarios by Integrated Waste Management (IWM) software. The photochemical smog, greenhouse gases, acid gases, toxic emissions, and energy consumption of each scenario are measured. Then, the environmental indices of each scenario are specified by weighting these parameters. Economic costs of scenarios have been also compared with each other based on literature. As final result, since the organic materials make more than 80% of the waste, compost can be a suitable method. Although the major part of the remaining 20% of waste can be recycled, due to the high cost of necessary equipment, the landfill option has been suggested. Therefore, the scenario with 80% composting and 20% landfilling is selected as superior environmental and economic scenario. This study shows that, to select a scenario with practical applications, simultaneously environmental and economic aspects of different scenarios must be considered.

Dynamic Analysis of Composite Doubly Curved Panels with Variable Thickness

Dynamic analysis of composite doubly curved panels with variable thickness subjected to different pulse types using Generalized Differential Quadrature method (GDQ) is presented in this study. Panels with variable thickness are used in the construction of aerospace and marine industry. Giving variable thickness to panels can allow the designer to get optimum structural efficiency. For this reason, estimating the response of variable thickness panels is very important to design more reliable structures under dynamic loads. Dynamic equations for composite panels with variable thickness are obtained using virtual work principle. Partial derivatives in the equation of motion are expressed with GDQ and Newmark average acceleration scheme is used for temporal discretization. Several examples are used to highlight the effectiveness of the proposed method. Results are compared with finite element method. Effects of taper ratios, boundary conditions and loading type on the response of composite panel are investigated.

Shear Behaviour of RC Deep Beams with Openings Strengthened with Carbon Fiber Reinforced Polymer

Construction industry is making progress at a high pace. The trend of the world is getting more biased towards the high rise buildings. Deep beams are one of the most common elements in modern construction having small span to depth ratio. Deep beams are mostly used as transfer girders. This experimental study consists of 16 reinforced concrete (RC) deep beams. These beams were divided into two groups; A and B. Groups A and B consist of eight beams each, having 381 mm (15 in) and 457 mm (18 in) depth respectively. Each group was further subdivided into four sub groups each consisting of two identical beams. Each subgroup was comprised of solid/control beam (without opening), opening above neutral axis (NA), at NA and below NA. Except for control beams, all beams with openings were strengthened with carbon fibre reinforced polymer (CFRP) vertical strips. These eight groups differ from each other based on depth and location of openings. For testing sake, all beams have been loaded with two symmetrical point loads. All beams have been designed based on strut and tie model concept. The outcome of experimental investigation elaborates the difference in the shear behaviour of deep beams based on depth and location of circular openings variation. 457 mm (18 in) deep beam with openings above NA show the highest strength and 381 mm (15 in) deep beam with openings below NA show the least strength. CFRP sheets played a vital role in increasing the shear capacity of beams.

Theoretical Study of Flexible Edge Seals for Vacuum Glazing

The development of vacuum glazing represents a significant advancement in the area of low heat loss glazing systems with the potential to substantially reduce building heating and cooling loads. Vacuum glazing consists of two or more glass panes hermetically sealed together around the edge with a vacuum gap between the panes. To avoid the glass panes from collapsing and touching each other under the influence of atmospheric pressure an array of support pillars is provided between the glass panes. A high level of thermal insulation is achieved by evacuating the spaces between the glass panes to a very low pressure which greatly reduces conduction and convection within the space; therefore heat transfer through this kind of glazing is significantly lower when compared with conventional insulating glazing. However, vacuum glazing is subject to inherent stresses due to atmospheric pressure and temperature differentials which can lead to fracture of the glass panes and failure of the edge seal. A flexible edge seal has been proposed to minimise the impact of these issues. In this paper, vacuum glazing system with rigid and flexible edge seals is theoretically studied and their advantages and disadvantages are discussed.

Detecting Rat’s Kidney Inflammation Using Real Time Photoacoustic Tomography

Photoacoustic Tomography (PAT) is a promising medical imaging modality that combines optical imaging contrast with the spatial resolution of ultrasound imaging. It can also distinguish the changes in biological features. But, real-time PAT system should be confirmed due to photoacoustic effect for tissue. Thus, we have developed a real-time PAT system using a custom-developed data acquisition board and ultrasound linear probe. To evaluate performance of our system, phantom test was performed. As a result of those experiments, the system showed satisfactory performance and its usefulness has been confirmed. We monitored the degradation of inflammation which induced on the rat’s kidney using real-time PAT.