Voltage-Controllable Liquid Crystals Lens

This study investigates a voltage-controllable liquid crystals lens with a Fresnel zone electrode. When applying a proper voltage on the liquid crystal cell, a Fresnel-zone-distributed electric field is induced to direct liquid crystals aligned in a concentric structure. Owing to the concentrically aligned liquid crystals, a Fresnel lens is formed. We probe the Fresnel liquid crystal lens using a polarized incident beam with a wavelength of 632.8 nm, finding that the diffraction efficiency depends on the applying voltage. A remarkable diffraction efficiency of ~39.5 % is measured at the voltage of 0.9V. Additionally, a dual focus lens is fabricated by attaching a plane-convex lens to the Fresnel liquid crystals cell. The Fresnel LC lens and the dual focus lens may be applied for DVD/CD pick-up head, confocal microscopy system, or electrically-controlling optical systems.





References:
[1] S. Sato, "Liquid-crystal lens-cells with variable focal length," Jpn. J. Appl. Phys. vol. 18, pp. 1679-1684, 1979.
[2] Nabeel A. Riza and Michael C. Dejule, "Three-terminal adaptive Nematic liquid-crystal lens device," Opt. Lett. vol. 19, pp. 1013-1015, 1994.
[3] F. Naumov, M. Yu. Loktev, I. R. Guralnik, and G. Vdovin, "Liquid-crystal adaptive lenses with modal control," Opt. Lett. vol. 23, pp. 992-994, 1998
[4] A. F. Naumov, G. D. Love, M. Yu. Loktev, and F. L. Vladimirov, "Control optimization of spherical modal liquid crystal lenses," Opt. Express vol. 4, pp. 344-352, 1999.
[5] Wen-Chi Hung, Wood-Hi Cheng, Ming-Shan Tsai, Yi-Chung Juan, I-Min Jiang, and Pochi Yeh, "Surface Plasmon Enhanced Diffraction in Cholesteric Liquid Crystals", Applied Physics Letter, vol. 90, 183115, 2007.
[6] F. Sobel, L. Wentworth, and J. C. Wiltse, "Quasi-optical surface waveguide and other components for 100- to 300-Ge region", IRE Trans. Microw. Tech. vol. 9, pp. 512-518, 1961.
[7] C. H. Tsai, P. Lai, K. Lee, and C. K. Lee, "Fabrication of a large F-number lenticular plate and its use as small-angle flat-top diffuser in autostereoscopic display screens", Proc. SPIE vol. 3957, pp.322-329 2000.
[8] N. Kitatura, S. Ogata, and Y. Mori, "Spectrometer employing a micro-Fresnel lens", Opt. Eng. vol. 34, pp. 584-588, 1995.
[9] J. S. Patel and K. Rastani, "Electrically controlled
polarization-independent liquid-crystal Fresnel lens arrays," Opt. Lett. vol. 16, pp. 532-534, 1991.
[10] Yun-Hsing Fan, Hongwen Ren, and Shin-Tson Wu, "Switchable Fresnel lens using polymer-stabilized liquid crystals", Optics Express, vol. 11, pp. 3080-3086, 2003.
[11] Hongwen Ren, Yun-Hsing Fan, and Shin-Tson Wu, "Tunable Fresnel lens using nanoscale polymer-dispersed liquid crystals," Appl. Phys. Lett. vol. 83, pp. 1515-1517, 2003.
[12] Liang-Chen Lin, Hong-Chang Jau, Tsung-Hsien Lin, Andy. Y. G. Fuh*, 2007,"Highly efficient and polarization-independent Fresnel lens based on dye-doped liquid crystal", Optics Express, vol. 15, pp. 2900-2906, 2007.
[13] Guoqiang Li, Pouria Valley, M. S. Giridhar, David L. Mathine, Gerald Meredith, Joshua N. Haddock, Bernard Kippelen, and N. Peyghambarian "Large-aperture switchable thin diffractive lens with interleaved electrode patterns",Appl. Phys. Lett., vol. 89, 141120, 2006.
[14] Guoqiang Li, David L. Mathine, Pouria Valley, Pekka Ayras, Joshua N. Haddock, M. S. Giridhar, Gregory Williby, Jim Schwiegerling, Gerald R. Meredith, Bernard Kippelen, Seppo Honkanen, and Nasser Peyghambarian, "Switchable electro-optic diffractive lens with high efficiency for ophthalmic applications", Applied Physical Sciences, vol. 103, p. 6100, 2006.
[15] H. Dammann, "Blazed synthetic phase-only holograms," Optik, vol. 31, pp. 95-104, 1970.