Using Stresses Obtained from a Low Detailed FE Model and Located at a Reference Point to Quickly Calculate the Free-edge Stress Intensity Factors of Bonded Joints

The present study focuses on methods allowing a convenient and quick calculation of the SIFs in order to predict the static adhesive strength of bonded joints. A new SIF calculation method is proposed, based on the stresses obtained from a FE model at a reference point located in the adhesive layer at equal distance of the free-edge and of the two interfaces. It is shown that, even limiting ourselves to the two main modes, i.e. the opening and the shearing modes, and using the values of the stresses resulting from a low detailed FE model, an efficient calculation of the peeling stress at adhesive-substrate corners can be obtained by this way. The proposed method is interesting in that it can be the basis of a prediction tool that will allow the designer to quickly evaluate the SIFs characterizing a particular application without developing a detailed analysis.


Authors:



References:
[1] D.B. Bogy, "Edge-bonded dissimilar orthogonal elastic wedges under normal and shear loading," in Journal of Applied Mechanics, vol. 35, pp. 460-466, 1968.
[2] D.B. Bogy, "On the problem of edge-bonded elastic quarter-planes
loaded at the boundary," International Journal of Solids and Structures, vol. 6, pp. 1287-1313, 1970.
[3] Z.Q. Qian, "On the evaluation of wedge corner stress intensity factors of
bi-material joints with surface tractions," Computers & Structures, vol. 79, pp. 53-64, 2001.
[4] Z.Q. Qian, and A.R. Akisanya, "Wedge corner stress behaviour of
bonded dissimilar materials," Theoretical and Applied Fracture Mechanics, vol. 32, pp. 209-222, 1999.
[5] J. Dundurs, "Discussion of edge-bonded dissimilar orthogonal elastic
wedges under normal and shear loading," Journal of Applied Mechanics,
vol. 36, pp. 650-652, 1969.
[6] B.J. McAdams, and R.A. Pearson, "Studies on the disbanding initiation
of interfacial cracks," Technical report n┬░ SAND2005-4749, DOI
10.2172/923175, Sandia National Laboratories, 2005.
[7] B.J. McAdams, and R.A. Pearson, "Application of critical stress intensity factors to evaluate adhesive failure at underfill /passivation
interface singularities," 4th IEEE International Conference on Polymers
and Adhesives in Microelectronics and Photonics, Polytronic 2004, pp. 27-32, 12-15 Sept. 2004.
[8] E.D. Reedy, Jr., "Intensity of the stress singularity at the interface corner
between a bonded elastic and rigid layer," Engineering Fracture Mechanics, vol. 36, pp. 575-583, 1990.
[9] E.D. Reedy, Jr., and T.R. Guess, "Interface corner failure analysis of
joint strength: Effect of a adherend stiffness," International Journal of
Fracture, vol. 88, pp. 305-314, 1997.
[10] E.D. Reedy, Jr., "Free edge stress intensity factor for a bonded ductile
layer subjected to shear," Journal of Applied Mechanics, Vol. 60, pp.715-720, 1993.
[11] C. De Chen, and C.H. Chue, "Singular stresses near apex of wedge by
finite element analysis," Journal of The Chinese Institute of Engineers,
vol. 26, No.4, pp. 423-434, 2003.
[12] C.H. Wang, and L.R.F. Rose, "Compact solutions for the corner singularity in bonded lap joint," International Journal of Adhesion and Adhesives, No.20, pp. 145-154, 2000.