The Effect of Seed Inoculation (Pseudomonas putida+Bacillus lentus) and Different Levels of Fertilizers on Yield and Yield Components of Wheat (Triticum aestivum L.) Cultivars

In order to study of The Effect of seed inoculation with Pseudomonas putida+Bacillus lentus on yield and yield components of wheat (Triticum aestivum L.) cultivars, an experiment was carried out as factorial based on Randomized Complete Block Design (RCBD) in Agricultural Research Station of Shahrood University of Technology. Results showed that inoculation with Pseudomonas putida+Bacillus lentus promoted seed germination. Also, inoculation with Pseudomonas putida+Bacillus lentus significantly affected grain yield, Number of spikes per m2, Number of grain per spike and 1000-seed weight and There was not statistically significant difference between Chamran and Pishtaz cultivars . Finally, the dosages of chemical fertilizers currently applied in commercial wheat field in Iran (Shahrood region) could be reduced through proper combination of Pseudomonas putida+Bacillus lentus inoculation plus fertilization.




References:
[1] Amer, G.A.; Utkheda, R.S.; 2000. Development of formulation of
biologica agents for management of root rot of lettuce and cucumber.
Can. J. Microbiol. 46:809-816.
[2] Baldani, V.L.D.; Baldani, J.I.; Dobereiner, J.; 1987. Inoculation of fieldgrown
wheat (Triticum astivum) with Azospirillum spp. In Brazil. Biol.
Fertil. Soils 4: 37-40.
[3] Bashan, Y.; Levanony, H.; 1990. Current status of Azospirillum
inoculation technology: Azospirillum as a challenge for agriculture. Can
J Microbiol 36:591-599.
[4] Belimov, A.A.; Kojemiakov, P.A.; Chuvarliyeve, C.V.; 1995. Interation
between barley and mixed cultures of nitrogen fixing and phosphatesolubilizing
bacteria. Plant Soil. 17:29-37.
[5] Bethlenfalvay, G.J.; Andrade, G.; Azcon-Aguilar, C.; 1997. Plant and
soil responses to mycorrhizal fungi and rhizobacteria in nodulated or
nitrate-fertilize peas. Biol. Fertil.Soil. 24: 164-168.
[6] Bhattarai, T.; Hess, D.; 1993. Yield responses of Nepalese spring wheat
(T. aestivum L.) cultivars to inoculation with Azospirillum spp. Of
Nepalese origin. Plant Soil 151, 67-76.
[7] Biswas, J.C.; Ladha, J. K.; Dazzo, F. B.; 2000. Rhizobia inoculation
improves nutrient uptake and growth of lowland rice. Soil Sci. Soc
Am.J. 64:1644-1650.
[8] Bullied, W.J.; Buss, T.J.; Vessey, J.K. (2002). Bacillus cereus UW85
inoculation effects on growth, nodulation and N accumulation in grain
legumes: Field studies. Can. J. Plant Sci., 82, 291-298.
[9] Caballero-Mellado, J.; Carcano-Montiel, M.G.; Mascarua-Esparza,
M.A.; 1992. Field inoculation of wheat (Triticum aestivum) with
Azospirillum brasilense under temperate climate. Symbiosis 13:243-253.
[10] Cakmakci, R.; Kantar, F.; Sahin, F.; 2001. Effect of N-fixing bacterial
inoculations on yield of sugar beet and barley. J. Plant Nutr. Soil Sci.
164:527-531.
[11] De Silva, A.; Patterson, K.; Rothrock, C.; Moore, J. (2000). Growth
promotion of highbush blueberry by fungal and bacterial
inoculants.Hort. Sci., 35, 1228-1230.
[12] De freitas, J.R,; 2000. Yield and N assimilation of winter wheat (T.
aestivum L., var. Norstar) inoculated with rhizobacteria. Pedobiologia.
44: 97-104.
[13] Fukui, R.; Schroth, M.N.; Hendson, M.; Hancock, J.G.; Firestone, M.K.;
1994. Growth patterns and metabolic activity of Pseudomonas in sugar
beet spermospheres: Relationship to pericarp colonization by Pythium
ultimum. Phytopathol. 84:1331-1338.
[14] Gouzou, L.; Burtin, G.; Philippy, R.; Bartoli, F.; Heulin, T.; 1993. Effect
of inoculation with Bacillus polymyxa on soil aggregation in the wheat
rhizosphere: preliminary examination. Geoderma 56, 479-491.
[15] Glick, B.R.; Jacobson, C.B.; Schwarze, M.M.; Pasternak, J.J. (1994). 1-
Aminocyclopropane-1-carboxylic acid deaminase mutants of the plant
growth-promoting rhizobacterium Pseudomonas putida GR12-2 do not
stimulate canola root elongation. Can. J. Microbiol., 40,911-915.
[16] Hoflich, G., Wiehe, W.; Hecht-Buchholz, C.H.; 1995. Rhizosphere
colonization of different growth- promoting Pseudomonas and
Rhizobium bacreria. Microbiol Res. 150:139-147.
[17] Joo, G.-J.; Kim, Y.-M.; Lee, I.-J.; Song, K.-S.; Rhee, I.-K.
(2004).Growth promotion of red pepper plug seedlings and the
production of gibberellins by Bacillus cereus, Bacillus macroides, and
Bacillus pumilus. Biotechnol. Lett., 26, 487-491.
[18] Kapulnik, Y.; Okon, Y.; Henis, Y.; 1987. Yield response of spring wheat
cultivars (Triticum aestivum and T. durum) to inoculation with
Azospirillum brasilense under field conditions. Biol. Fertil. Soil. 4: 27-
35.
[19] Kucey, R.M.N.; Janzen, H. H.; Legett, M.E.; 1989. Microbially mediated
increases in plant available phosphorus. Adv. Agron. 42:199-228.
[20] Kumar, V.; Narula, N.; 1999. Solubilization of inorganic phosphates and
growth emergence of wheat as affected by Azotobacter chrococcum.
Biol. Fert. Soils. 28:301-305.
[21] Kim, D-S.; Cook, R.J.; Weller, D.M. (1997). Bacillus sp. L324-92 for
biological control of three root diseases of wheat grown with reduced
tillage. Phytopathol., 87, 551-558.
[22] Kloepper, J.W.; Lifshitz, R.; Zablotowicz, R.M. (1989). Free-living
bacterial inocula for enhancing crop productivity. Trends Biotechnol.,7,
39-44.
[23] Lifshitz, R.; Kloepper, J.W.; Kozlowsky, M.; Simonson, C.; Carlson, J.;
Tipping, E.M. et al.; 1987. Growth promotion of canola (rapeseed)
seedlings by strain of Pseudomonas putida under gnotobiotic conditions.
Can J Microbiol 33(5):390-395.
[24] Lugtenberg, B.J.; Chin-A-Woeng, T.F.; loemberg, G.V. (2002).
Microbe-plant interactions: principles and mechanisms. Antonie van
Leeuwenhoek, 81, 373-383.
[25] Murty, M.G.; Ladha, J.K.; 1988. Influence of Azospirillum inoculation
on the mineral uptake and growth of rice under hydroponic conditions.
Plant and Soil. 108: 281-285.
[26] Nicholson, W.L. (2002). Roles of Bacillus endospores in the
environment. CMLS, Cell. Mol. Life Sci., 59, 410-416.
[27] Ozturk, A.; Caglar, O.; Sahin, F.; 2003. Yield response of wheat and
barley to inoculation of plant growth promoting rhizobacteria at various
levels of nitrogen fertilization. J. Plant Nutr. Soil Sci. 166: 262-266.
[28] Pal, S.S.; 1999. Interaction of an acid tolerant strain of phosphate
solubilizing bacteria with a few acid tolerant crops. Plant Soil. 213:221-
230.
[29] Quadt-Hallmann, A.; Hallmann, J.; Kloepper, J.W. (1997). Bacterial
endophytes in cotton: location and interaction with other plantassociated
bacteria. Can. J. Microbiol., 43, 254-259.
[30] Rai, S.N.; Gaur, A.C.; 1988. Characterization of Azotobacter spp. And
effect of Azotobacter and Azospirillum as inoculant on the yield and Nuptak
of wheat crop. Plant Soil. 109: 131-134.
[31] Rodriguez, C.E.A.; Gonzales, A.G.; Lopez, J.R.; Di Ciacco, C.A.;
Pacheco, B.J.C.; Parada, J.L.; 1996. Response of fiel Grown wheat to
inoculation with Azospirillum brasilense and Bacillus polymyxa in the
semiarid region of Argentina. Soils Fertil. 59: 800.
[32] Ryder, M.H.; Nong, Y.Z.; Terrace, T.E.; Rovira, A.D.; Hua, T. W.;
Correll, R.L.; 1999. Use of strains of Bacillus isolated in China to
suppress take-all and Rhizoctonia root ot, and promote seedling growth
of glasshouse-grown wheat in Australian soils. Soil Biol. Biochem.
31,19-29.
[33] Ryu, C.; Farag, M.A.; Hu, C.-H.; Reddy, M.S.; Wei, H.-X.; Pare, P.W.;
Kloepper, J.W. (2003). Bacteria volatiles promote growth in
Arabidopsis. Proc. Nat. Acad. Sci., (USA) 100, 4927-4932.
[34] Sahin, F.; Cakmakci, R.; Kantar, F.; 2004. Sugar beet and barley yields
in relation to inoculation with N-fixing and phosphate solubilizing
bacteria. Plant and Soil 265,123-129.
[35] Saubidet, M.I.; Fatta, N.; Barneix, A.J. (2002). The effect of inoculation
with Azospirillum brasilense on growth and nitrogen utilization by
wheat plants. Plant. Soil., 245, 215-222.
[36] Schilling, G.; Grnransee, A.; Deubel, A.; Lezovic, G.; Ruppel, S.; 1998.
Phosphorus availability, root exudates, and microbial activity in the
rhizosphere. Z. Pflanzenernahr. Bodenk. 161:465-478.
[37] Tiwari, V.N.; Lehri, L.K.; Pathak, A.N.; 1989 Effect of inoculating crop
with phosphor-microbes. Exp. Agric. 25:47-50.
[38] Urquiaga, S.; Cruz, K.H.S.; Boddey, R.M.; 1992. Contribution of
nitrogen fixation to suger cane: nitrogen-15 and nitrogen-balance
estimates. Soil Sci. Soc. Amer. Proc. 56:105-114.
[39] Whitelaw, M.A.; 2000. Growth promotion of plants inoculated with
phosphate-solubilizing fungi. Adv. Agron. 69:99-151.
[40] Whitelaw, M.A.; Hardenand, T.A.; Bender, G.L.; 1997. Plant growth
promotion of wheat inoculated with Penicillium radicum sp. Nov.
Australian J. Soil Res. 35:291-300.
[41] Yoneyama, T.; Muraoka, T.; Kim, T.H.; Dacanay, E.V.; Nakanishi, Y.;
1997. The natural N abundance of sugarcane and neighboring plants in
Brazil, the Philippines and Miyako (Japan). Plant Soil. 189:239-244.
[42] Young, C.S.; Lethbridge, G.; Shaw, L.J.; Burns, R.G. (1995). Survival of
inoculated Bacillus cereus spores and vegetative cells in nonplanted and
rhizosphere soil. Soil Biol. Biochem., 27, 1017-1026.