The BGMRES Method for Generalized Sylvester Matrix Equation AXB − X = C and Preconditioning

In this paper, we present the block generalized
minimal residual (BGMRES) method in order to solve the
generalized Sylvester matrix equation. However, this method may
not be converged in some problems. We construct a polynomial
preconditioner based on BGMRES which shows why polynomial
preconditioner is superior to some block solvers. Finally, numerical
experiments report the effectiveness of this method.




References:
[1] L. Bao, Y. Lin and Y. Wei, ”Krylov subspace methods for the generalized
Sylvester equation”, Appl. Mathem. Comput. vol. 175, 2006, pp. 557–573.
[2] D. S. Bernstein and W. M. Haddad, ”LQG control with a Hinf
performance bound: a Riccati equation approach”, IEEE Trans. Automat.
Control, vol. AC-34, 1989, pp. 293-305.
[3] A. Bouhamidi and K. Jbilou, ”A note on the numerical approximate
solutions for generalized sylvester matrix equations with applications”,
Appl. Math. Comput., vol. 206, 2008, pp. 687–694.
[4] J. W. Demmel, Applied numerical linear algebra; SIAM, 1997.
[5] Z. Gajic and M. T. J. Qureshi, Lyapunov Matrix Equation in System
Stability and Control; Dover, Mineola, NY, 2008.
[6] G. H. Golub, S. Nash and C. F. Vanloan , ”A Hessenberg- Schur method
for problem AX + XB = C”, IEEE Trans. Automat. Contr., vol. 24,
1979, pp. 909–913.
[7] G. H. Golub, S. Nash and C. F. Vanloan, Matrix Computations, Jhons
Hoplins U. P., Baltimore, 3th edn, 1996.
[8] K. Jbilou, A. Messaoudi and A. Sadok, ”Global FOM and GMRES
algorithms for matrix equation”, Appl. Numer. Math., vol. 31, 1999, pp.
49–63.
[9] D. Khojasteh Salkuyeh and F. Toutounian, ”New approaches for solving
large sparse Sylvester equations”, Appl. Math. Comput., vol. 173, no. 1,
2006, pp. 9–18.
[10] T. Li, P. Chang-Yi Weng,E. King- Wash Chu and W. W. Lin,
”Large-Scale Stein and Lyapunov equations, Smith methods and
applications”, Numer. Algor, vol. 63, 2013, pp. 727–752.
[11] M. Mohseni Moghadam, A. Rivaz, A. Tajaddini and F. Saberi Mouvahed,
”Convergence analysis of the global FOM and GMRES methods for
solving matrix equations AXB = C with spd coefficients”, Bull. Iranian
Math. Soc, vol. 41, no. 4, 2015, pp. 981–1001.
[12] B. C. Moore, ”Principal component analysis in linear systems:
controllability, observability, and model reduction”, IEEE Trans. Automat.
Contr., vol. AC-26, 1981, pp. 17-32.
[13] F. Panjeh Ali Beik, ”Note to the global GMRES for solving the matrix
equation AXB = C”, Int. J. Eng. Nat. Sci., vol. 5, no. 2, 2003, pp.
101–105.
[14] Y. Saad, Iterative Methods for Sparse Linear Systems, SIAM,
Philadelphia, 2003.
[15] J. Saak, Efficient Numerical Solution of Large Scale Algebraic Matrix
Equations in PDE Control and Model Order Reduction, Dr. Rer. Nat.
dissertation, Chemnitz University of Technology, Germany, 2009.
[16] M. Sadkane, ”A low rank Krylov squared Smith method for large-scale
discrete-time Lyapunov equations”, Linear Algebra Appl., vol. 436, 2012,
pp. 2807–2827.
[17] J. L. Salle and Lefschetz, Stability by Lyapunovs Direct Method with
Applications, Academic press, 1961.
[18] M. G. Sanfonov and R. Y. Chiang, A Schur method for balanced model
reduction, Proc. Amer. Control Conf., Atlanta, GA, 1988.
[19] K. Yi-Fen and M. Chang- Feng, preconditioned nested splitting
conjugate gradient iterative method for the large sparse generalized
Sylvester equation, Computers and Mathematics with Applications, vol.
68, no. 10, 2014, pp. 1409–1420.