Synthesis of SnO Novel Cabbage Nanostructure and Its Electrochemical Property as an Anode Material for Lithium Ion Battery

The novel 3D SnO cabbages self-assembled by nanosheets were successfully synthesized via template-free hydrothermal growth method under facile conditions. The XRD results manifest that the as-prepared SnO is tetragonal phase. The TEM and HRTEM results show that the cabbage nanosheets are polycrystalline structure consisted of considerable single-crystalline nanoparticles. Two typical Raman modes A1g=210 and Eg=112 cm-1 of SnO are observed by Raman spectroscopy. Moreover, galvanostatic cycling tests has been performed using the SnO cabbages as anode material of lithium ion battery and the electrochemical results suggest that the synthesized SnO cabbage structures are a promising anode material for lithium ion batteries.




References:
[1] Kuang Q, Jiang Z-Y, Xie Z-X, Lin S-C, Lin Z-W, Xie S-Y, et al. Journal of
the American Chemical Society. 2005; 127:11777-84.
[2] Ding YS, Shen XF, Gomez S, Luo H, Aindow M, Suib SL. Advanced
Functional Materials. 2006; 16:549-55.
[3] Watson J. Sensors and Actuators. 1984; 5:29-42.
[4] Xia W, Wang H, Zeng X, Han J, Zhu J, Zhou M, et al. CrystEngComm.
2014; 16:6841.
[5] Iqbal MZ, Wang F, Rafique MY, Ullah A, Qiu H. Materials Letters. 2012;
78:50-3.
[6] Odani A, Nimberger A, Markovsky B, Sominski E, Levi E, Kumar VG, et
al. Development and testing of nanomaterials for rechargeable lithium
batteries. Journal of Power Sources2003. p. 517-21.
[7] Aurbach D, Nimberger A, Markovsky B, Levi E, Sominski E, Gedanken
A. Chemistry of materials. 2002;14:4155-63.
[8] Iqbal MZ, Wang F, Zhao H, Rafique MY, Wang J, Li Q. Scripta
Materialia. 2012;67:665-8.
[9] Krishnakumar T, Pinna N, Kumari KP, Perumal K, Jayaprakash R.
Materials letters. 2008;62:3437-40.
[10] Iqbal MZ, Wang F, Javed Q-u-a, Rafique MY, Qiu H, Nabi G. Materials
Letters. 2012;75:236-9.
[11] Uchiyama H, Imai H. Crystal growth & design. 2007;7:841-3.
[12] Iqbal MZ, Wang F, Feng T, Zhao H, Rafique MY, Rafi ud D, et al.
Materials Research Bulletin. 2012;47:3902-7.
[13] Shin JH, Song JY, Kim YH, Park HM. Materials Letters. 2010;64:1120-2.
[14] Dai ZR, Pan ZW, Wang ZL. Journal of the American Chemical Society.
2002;124:8673-80.
[15] Ning J, Dai Q, Jiang T, Men K, Liu D, Xiao N, et al. Langmuir : the ACS
journal of surfaces and colloids. 2008;25:1818-21.
[16] Kumar B, Lee D-H, Kim S-H, Yang B, Maeng S, Kim S-W. The Journal
of Physical Chemistry C. 2010;114:11050-5.
[17] Orlandi MO, Leite ER, Aguiar R, Bettini J, Longo E. The Journal of
Physical Chemistry B. 2006;110:6621-5.
[18] Wachtler M, Winter M, Besenhard JO. Journal of Power Sources.
2002;105:151-60.
[19] Meduri P, Pendyala C, Kumar V, Sumanasekera GU, Sunkara MK. Nano
Letters. 2009;9:612-6.
[20] Kim K-C, Lee D-H, Maeng S. Materials Letters. 2012;86:119-21.
[21] Luo H, Liang LY, Cao HT, Liu ZM, Zhuge F. ACS applied materials &
interfaces. 2012;4:5673-7.
[22] Batzill M, Diebold U. Progress in Surface Science. 2005;79:47-154.
[23] Chen MH, Huang ZC, Wu GT, Zhu GM, You JK, Lin ZG. Materials
Research Bulletin. 2003;38:831-6.
[24] Ying Z, Wan Q, Cao H, Song ZT, Feng SL. Applied Physics Letters.
2005;87:-.
[25] Terra J, Guenzburger D. PhRvB. 1991;44:8584.
[26] Idota Y, Kubota T, Matsufuji A, Maekawa Y, Miyasaka T. Science.
1997;276:1395-7.
[27] Paek S-M, Yoo E, Honma I. Nano Letters. 2008;9:72-5.
[28] Wang X, Zhou X, Yao K, Zhang J, Liu Z. Carbon. 2011;49:133-9.
[29] Fan J, Wang T, Yu C, Tu B, Jiang Z, Zhao D. Advanced materials.
2004;16:1432-6.
[30] Sivashanmugam A, Kumar TP, Renganathan NG, Gopukumar S,
Wohlfahrt-Mehrens M, Garche J. Journal of Power Sources.
2005;144:197-203.