Synthesis of Gold Nanoparticles Stabilized in Na-Montmorillonite for Nitrophenol Reduction

Synthesis of gold nanoparticles has attracted much attention since the pioneering discovery of the high catalytic activity of supported gold nanoparticles in the reaction of CO oxidation at low temperature. In this research field, we used Na-montmorillonite for gold nanoparticles stabilization; various gold loading percentage 1, 2 and 5% were used for gold nanoparticles preparation. The gold nanoparticles were obtained using chemical reduction method using NaBH4 as reductant agent. The obtained gold nanoparticles stabilized in Na-montmorillonite were used as catalysts for the reduction of 4- nitrophenol to aminophenol with sodium borohydride at room temperature. The UV-Vis results confirmed directly the gold nanoparticles formation. The XRD and N2 adsorption results showed the formation of gold nanoparticles in the pores of montmorillonite with an average size of 5 nm obtained on samples with 2% gold loading percentage. The gold particles size increased with the increase of gold loading percentage. The reduction reaction of 4- nitrophenol into 4-aminophenol with NaBH4 catalyzed by Au-Namontmorillonite catalyst exhibits remarkably a high activity; the reaction was completed within 9 min for 1%Au-Na-montmorillonite and within 3 min for 2%Au-Na-montmorillonite.




References:
[1] M. Haruta, N. Yamada, T. Kobayashi and S. Iijima, Journal of
Catalysis, vol. 115, pp. 301-309, 1989.
[2] C. Milone, R. Ingoglia, L. Schipilliti, C. Crisafulli, G. Neri and S.
Galvagno, Journal of Catalysis, vol. 236, pp. 80-90, 2005.
[3] C. Caballero, J. Valencia, M. Barrera and A. Gil, Powder Technology,
vol. 203, pp. 412-414, 2010.
[4] S. A. C. Carabineiro, B. F. Machado, R. P. Bacsa, P. Serp, G. Dražić, J.
L. Faria and J. L. Figueiredo, Journal of Catalysis, vol. 273, pp. 191-
198, 2010.
[5] Z. Y. Yuan, V. Idakiev, V. Vantomme, T. Tabakova, T. Z. Ren and B.
L. Su, Catalysis Today, vol. 131, pp. 203-210, 2008.
[6] K. Kuroda, T. Ishida and M. Haruta, Journal of Molecular Catalysis A:
Chemical, vol. 298, pp. 7-11, 2009.
[7] L. Qiu, Y. Peng, B. Liu, B. Lin, Y. Peng, M. J. Malik and F. Yan,
Applied Catalysis A: General, vol. 413-414, pp. 230-237, 2012.
[8] J. Zhang, G. Chen, M. Chaker, F. Rosei and D. Ma, Applied Catalysis
B: Environmental, vol. 132-133, pp. 107-115, 2013.
[9] S. Mitchell, «Kirk-Othmer Encyclopaedia of Chemical Technology,»
vol. 2, 4th edn, Wiley-Interscience, New York, USA, 1992.
[10] M. Boronat, A. Corma, F. Illas, J. Radilla, T. Ródenas and M. J.
Sabater, Journal of Catalysis, vol. 278, pp. 50-58, 2011.
[11] R. Zanella, S. Giorgio, C. H. Shin, C. R. Henry and C. Louis, Journal of
Catalysis, vol. 222, pp. 357-367, 2004.
[12] S. Ivanova, V. Pitchon, Y. Zimmermann and C. Petit, Applied Catalysis
A: General, vol. 298, pp. 57-64, 2006.
[13] H. S. Schrekker, M. A. Gelesky, M. P. Stracke, C. M. L. Schrekker, G.
Machado, S. R. Teixeira, J. C. Rubim and J. Dupont, Journal of Colloid
Interface Science, vol. 316, pp. 189-195, 2007.
[14] M. Tamura and H. Fujihara, Journal of American Chemical Society,
vol. 125, pp. 15742-15743, 2003.
[15] K. Shang, Y. Geng, X. Xu, C. Wang, Y. Lee, J. Hao and H. G. Liu,
Material Chemical Physics, vol. 146, pp. 88-98, 2014.
[16] W. Zhang, B. Liu, B. Zhang, G. Bian, Y. Qi, X. Yang and C. Li,
Colloids and Surfaces A: Physicochemical and Engineering Aspects,
vol. 466, pp. 210-218, 2015.
[17] L. Zhu, S. Letaif, Y. Liu, F. Gervais and C. Detellier, Applied Clay
Science, vol. 43, pp. 439-446, 2009.
[18] S. Letaif, S. Grant and C. Detellier, Applied Clay Science, vol. 53, pp.
236-243, 2011.
[19] B. J. Borah, D. Dutta and D. K. Dutta, Applied Clay Science, vol. 49,
pp. 317-323, 2010.
[20] C. Lin, K. Tao, D. Hua, Z. Ma and S. Zhou, Molecules, vol. 18, pp.
12609-12620, 2013.