Structural and Electronic Characterization of Supported Ni and Au Catalysts used in Environment Protection Determined by XRD,XAS and XPS methods

The nickel and gold nanoclusters as supported catalysts were analyzed by XAS, XRD and XPS in order to determine their local, global and electronic structure. The present study has pointed out a strong deformation of the local structure of the metal, due to its interaction with oxide supports. The average particle size, the mean squares of the microstrain, the particle size distribution and microstrain functions of the supported Ni and Au catalysts were determined by XRD method using Generalized Fermi Function for the X-ray line profiles approximation. Based on EXAFS analysis we consider that the local structure of the investigated systems is strongly distorted concerning the atomic number pairs. Metal-support interaction is confirmed by the shape changes of the probability densities of electron transitions: Ni K edge (1s → continuum and 2p), Au LIII-edge (2p3/2 → continuum, 6s, 6d5/2 and 6d3/2). XPS investigations confirm the metal-support interaction at their interface.




References:
[1] E. A. Stern, "Theory of EXAFS" in X-ray absorption: principles,
applications, techniques of EXAFS, SEXAFS and XANES, D.C.
Koningsberger, R. Prins, Ed. New York: Weley, 1988.
[2] F. W Lytle, D. E. Sayers and E. A. Stern, "Report of the international
workshop on standards and criteria in X-ray absorption spectroscopy",
Physica B, vol. 158, pp. 701-722, 1989.
[3] J. H Sinfelt, G. H. Via and F. W. Lytle, "Application of EXAFS in
catalysis. Structure of bimetallic cluster catalysts", Catal. Rev. Sci. Eng.,
vol. 26, pp. 81-140, 1984
[4] L. X Chen, T. Liu, M. C. Thurnauer, R. Csencsits and T. Rajh, "Fe2O3
Nanoparticle structures investigated by X-ray absorption near-edge
structure, surface modification and model calculations", J. Phys. Chem.
B., vol. 106, pp. 8539-8546, 2002.
[5] R. Turcu, I. Peter, O. Pana, L. Giurgiu, N. Aldea, B. Barz, M.N. Grecu,
A. Coldea, "Structural and magnetic properties of polypyrrole
nanocomposites", Mol. Cryst. Liq. Cryst., vol. 417, pp. 235-243, 2004.
[6] N. Aldea, R. Turcu, A. Nan, I. Craciunescu, O. Pana, X. Yaning,
Zhonghua Wu, D. Bica, L. Vekas and F. Matei, "Investigation of
nanostructured Fe3O4 polypyrrole core-shell composites by X-ray
absorption spectroscopy and X-ray diffraction using synchrotron
radiation", J.Nanopart. Res., vol. 11, pp. 1429-1439, 2009.
[7] B. E. Warren, "X-Ray Diffraction", Ed. New York: Dover Publication,
1969
[8] D. Balzar, "X Ray Diffraction Line Broadening: Modelling and
Applications to High -Tc Superconductors", J. Res. Nat. Inst. Stand.
Technol., vol. 98, pp. 321-353, 1993.
[9] N. Aldea and E. Indrea, "XRLINE, a program to evaluate the crystallite
size of supported metal catalysts by single x-ray profile Fourier
analysis", Comput. Phys. Commun., vol. 60, pp. 155-163, 1990.
[10] P. Marginean and A. Olariu, "Metal / Oxide support effects in the H2-
H2O deuterium exchange reaction catalyzed by nickel", J. Catal., vol.
95, pp. 1-12, 1985.
[11] S. Galvano and G. Parravano, "Chemical reactivity of supported gold:
IV. Reduction of NO by H2", J. Catal., vol. 55, pp. 178-190, 1978.
[12] A. Ueda and M. Haruta, " Reduction of nitrogen monoxide with propane
over Au/Al2O3 mixed mechanically with Mn2O3", Appl. Catal. B, vol.
18, pp. 115-121, 1998.
[13] N. Aldea, A. Gluhoi, P. Marginean, C. Cosma and X. Yaning, "Extended
X-ray absorption fine structure and X-ray diffraction studies on
supported nickel catalysts", Spectrochim. Acta B, vol. 55, pp. 997-1008,
2000.
[14] R. Grisel, K. J. Weststrate, A. Gluhoi and B. E. Nieuwenhuys, "Catalysis
by gold nanoparticles", Gold Bulletin, vol. 35, pp. 39-45, 2002.
[15] A. Gluhoi, "Fundamental studies focused on understanding of gold
catalysts" PhD diss., Leiden University, 2005
[16] BSRF. Activity Report 1993. Beijing Electron Positron Collider
National Laboratory. NL-SH-013.
[17] N. Aldea and E. Indrea, "Fourier analysis of EXAFS and XANES data -
a self-contained Fortran program-package - the third version", Comput.
Phys. Commun., vol. 60, pp. 145-154.
[18] N. Aldea, R. Zapotinschi and C. Cosma, "Crystallite size determination
for supported metal catalysts by single X-ray profile Fourier analysis",
Fresenius J. Anal. Chem., vol. 355, pp. 367-369, 1995.
[19] C. Bonnelle, "X-ray Spectroscopy" in Physical Methods in Advanced
Inorganic Chemistry, H. A. O. Hill and P. Day, Ed. New York:
Interscience, 1968.
[20] N. Aldea, A. Gluhoi, P. Marginean, C. Cosma, Y. Xie, T. Hu, Whongua
Wu and Baozhong Dong, "Investigation of supported nickel catalysts by
X-ray absorption spectrometry and X-ray diffraction using synchrotron
radiation", Spectrochim. Acta Part B., vol. 57, pp. 1453-1460, 2002.
[21] A. San-Miguel, "A program for fast classic or dispersive XAS data
analysis in a PC", Physica B., vol. 208&209, pp. 177-179, 1995.
[22] D. C. Koningsberger and B. C. Gates, "Nature of the metal-support
interface in supported metal catalysts: results from X-ray absorption
spectroscopy", Catal. Lett., vol. 14, pp. 271-277, 1992.
[23] C. H. Lin, S. H. Hsu, M.Y. Lee and S. D. Lin, "Active morphology of
Au/╬│-Al2O3-a model by EXAFS", J. Catal., vol. 209, pp. 62-68, 2002.
[24] R. Zanella, S. Giorgio, C. H. Shin, C. R. Henry, and C. Louis,
"Characterization and reactivity in CO oxidation of gold nanoparticles
supported on TiO2 prepared by deposition-precipitation with NaOH and
urea", J. Catal., vol. 222, pp. 357-367, 2004.
[25] R. A. Young, R. J. Gerdes and A. J. C. Wilson, "Propagation of Some
Systematic Errors in X-ray Line Profile Analysis", Acta Cryst., vol. 22,
pp. 155-162, 1967.
[26] J. S. Walker, "Fast Fourier Transform" 2nd ed., New York, London,
Tokyo: CRC Boca Raton, pp. 104-112, 1997.
[27] F. Raiteri, A. Senin and G. Fagherazzi, "An automatic system for X -ray
diffraction line profile analysis", J. Mat. Sci, vol. 13, pp.1717-1724,
1978.
[28] R. Turcu, Al. Darabont, A. Nan, N. Aldea, D. Macovei, D. Bica, L.
Vekas, O. Pana, M.L. Soran, A.A. Koos and L. P. Biro, "New
polypyrrole-multiwall carbon nanotubes hybrid materials", J.
Optoelectron. Adv. Mater., vol. 8, pp. 643-647, 2006.