Silver Nanoparticles-Enhanced Luminescence Spectra of Silicon Nanocrystals

Metal-enhanced Luminescence of silicon nanocrystals
(SiNCs) was determined using two different particle sizes of silver
nanoparticles (AgNPs). SiNCs have been characterized by scanning
electron microscopy (SEM), high resolution transmission electron
microscopy (HRTEM), Fourier transform infrared spectroscopy
(FTIR) and X-ray photoelectron spectroscopy (XPS). It is found that
the SiNCs are crystalline with an average diameter of 65 nm and FCC
lattice. AgNPs were synthesized using photochemical reduction of
AgNO3 with sodium dodecyl sulphate (SDS). The enhanced
luminescence of SiNCs by AgNPs was evaluated by confocal Raman
microspectroscopy. Enhancement up to x9 and x3 times were
observed for SiNCs that mixed with AgNPs which have an average
particle size of 100 nm and 30 nm, respectively. Silver NPs-enhanced
luminescence of SiNCs occurs as a result of the coupling between the
excitation laser light and the plasmon bands of AgNPs; thus this
intense field at AgNPs surface couples strongly to SiNCs.





References:
[1] T.-H. Chen, K.-W. Kuo, W.-T. Kuo, H.-Y. Huang, Y.-Y. Huang,
Quantum Dots Combined with Nanogold to Detect the Delivery Routes
of Particles into Cells, Journal of Bionanoscience, 2 (2008) 109-113.
[2] R. Bakalova, Z. Zhelev, H. Ohba, Y. Baba, Quantum Dot-Conjugated
Hybridization Probes for Preliminary Screening of siRNA Sequences,
Journal of the American Chemical Society, 127 (2005) 11328-11335.
[3] Y. Fu, J. Zhang, J.R. Lakowicz, Silver-enhanced fluorescence emission
of single quantum dot nanocomposites, Chemical Communications,
(2009) 313-315.
[4] N.A. Harun, M.J. Benning, B.R. Horrocks, D.A. Fulton, Gold
nanoparticle-enhanced luminescence of silicon quantum dots coencapsulated
in polymer nanoparticles, Nanoscale, 5 (2013) 3817-3827.
[5] F. Erogbogbo, K.T. Yong, I. Roy, G.X. Xu, P.N. Prasad, M.T. Swihart,
Biocompatible luminescent silicon quantum dots for imaging of cancer
cells, ACS Nano, 2 (2008) 873-878.
[6] N.H. Alsharif, C.E.M. Berger, S.S. Varanasi, Y. Chao, B.R. Horrocks,
H.K. Datta, Alkyl-Capped Silicon Nanocrystals Lack Cytotoxicity and
have Enhanced Intracellular Accumulation in Malignant Cells via
Cholesterol-Dependent Endocytosis, Small, 5 (2009) 221-228.
[7] L.T. Canham, Silicon quantum wire array fabrication by electrochemical
and chemical dissolution of wafers, Applied Physics Letters, 57 (1990)
1046-1048.
[8] A. Cullis, L.T. Canham, P. Calcott, The structural and luminescence
properties of porous silicon, J. Appl. Phys., 82 (1997) 909-965.
[9] N. O'Farrell, A. Houlton, B.R. Horrocks, Silicon nanoparticles:
applications in cell biology and medicine, Int. J. Nanomed., 1 (2006)
451-472.
[10] Y. Chao, A. Houlton, B.R. Horrocks, M.R.C. Hunt, N.R.J. Poolton, J.
Yang, L. Siller, Optical luminescence from alkyl-passivated Si
nanocrystals under vacuum ultraviolet excitation: Origin and
temperature dependence of the blue and orange emissions, Applied
Physics Letters, 88 (2006) 263119-263119-263113.
[11] Y. Chao, S. Krishnamurthy, M. Montalti, L.H. Lie, A. Houlton, B.R.
Horrocks, L. Kjeldgaard, V.R. Dhanak, M.R.C. Hunt, L. Šiller,
Reactions and luminescence in passivated Si nanocrystallites induced by
vacuum ultraviolet and soft-x-ray photons, Journal of Applied Physics,
98 (2005) -.
[12] R.J. Rostron, Y. Chao, G. Roberts, B.R. Horrocks, Simultaneous
photocharging and luminescence intermittency in silicon nanocrystals,
Journal of Physics Condensed Matter, 21 (2009).
[13] A.M. Smith, S. Nie, Semiconductor Nanocrystals: Structure, Properties,
and Band Gap Engineering, Accounts of Chemical Research, 43 (2009)
190-200.
[14] A.M. Hartel, S. Gutsch, D. Hiller, C. Kübel, N. Zakharov, P. Werner, M.
Zacharias, Silicon nanocrystals prepared by plasma enhanced chemical vapor deposition: Importance of parasitic oxidation for third generation
photovoltaic applications, Applied Physics Letters, 101 (2012) -.
[15] T. Fischer, V. Petrova-Koch, K. Shcheglov, M.S. Brandt, F. Koch,
Continuously tunable photoluminescence from Si+-implanted and
thermally annealed SiO2 films, Thin Solid Films, 276 (1996) 100-103.
[16] M.V. Wolkin, J. Jorne, P.M. Fauchet, G. Allan, C. Delerue, Electronic
States and Luminescence in Porous Silicon Quantum Dots: The Role of
Oxygen, Physical Review Letters, 82 (1999) 197-200.
[17] J.S. Biteen, N.S. Lewis, H.A. Atwater, H. Mertens, A. Polman, Spectral
tuning of plasmon-enhanced silicon quantum dot luminescence, Applied
Physics Letters, 88 (2006) 131109-131109-131103.
[18] J.S. Biteen, D. Pacifici, N.S. Lewis, H.A. Atwater, Enhanced Radiative
Emission Rate and Quantum Efficiency in Coupled Silicon Nanocrystal-
Nanostructured Gold Emitters, Nano Letters, 5 (2005) 1768-1773.
[19] J.S. Biteen, L.A. Sweatlock, H. Mertens, N.S. Lewis, A. Polman, H.A.
Atwater, Plasmon-Enhanced Photoluminescence of Silicon Quantum
Dots: Simulation and Experiment, The Journal of Physical Chemistry
C, 111 (2007) 13372-13377.
[20] H. Li, D. Xu, G. Guo, L. Gui, Y. Tang, X. Ai, Z. Sun, X. Zhang, G.G.
Qin, Intense and stable blue-violet emission from porous silicon
modified with alkyls, Journal of Applied Physics, 88 (2000) 4446-4448.
[21] J.C. Vial, A. Bsiesy, F. Gaspard, R. Hérino, M. Ligeon, F. Muller, R.
Romestain, R.M. Macfarlane, Mechanisms of visible-light emission
from electro-oxidized porous silicon, Physical Review B, 45 (1992)
14171-14176.
[22] Y.H. Xie, W.L. Wilson, F.M. Ross, J.A. Mucha, E.A. Fitzgerald, J.M.
Macaulay, T.D. Harris, Luminescence and structural study of porous
silicon films, Journal of Applied Physics, 71 (1992) 2403-2407.
[23] D.I. Kovalev, I.D. Yaroshetzkii, T. Muschik, V. Petrova‐Koch, F. Koch,
Fast and slow visible luminescence bands of oxidized porous Si, Applied
Physics Letters, 64 (1994) 214-216.
[24] J. Linnros, N. Lalic, A. Galeckas, V. Grivickas, Analysis of the stretched
exponential photoluminescence decay from nanometer-sized silicon
crystals in SiO2, Journal of Applied Physics, 86 (1999) 6128-6134.
[25] G.M. Credo, M.D. Mason, S.K. Buratto, External quantum efficiency of
single porous silicon nanoparticles, Applied Physics Letters, 74 (1999)
1978-1980.
[26] D.M. Schaadt, B. Feng, E.T. Yu, Enhanced semiconductor optical
absorption via surface plasmon excitation in metal nanoparticles,
Applied Physics Letters, 86 (2005) -.
[27] H. Mertens, J.S. Biteen, H.A. Atwater, A. Polman, Polarization-
Selective Plasmon-Enhanced Silicon Quantum-Dot Luminescence, Nano
Letters, 6 (2006) 2622-2625.
[28] W. Trabesinger, A. Kramer, M. Kreiter, B. Hecht, U.P. Wild, Singlemolecule
near-field optical energy transfer microscopy, Applied Physics
Letters, 81 (2002) 2118-2120.
[29] A. Kramer, W. Trabesinger, B. Hecht, U. Wild, Optical near-field
enhancement at a metal tip probed by a single fluorophore, Applied
Physics Letters, 80 (2002) 1652-1654.
[30] E. Dulkeith, M. Ringler, T.A. Klar, J. Feldmann, A. Muñoz Javier, W.J.
Parak, Gold Nanoparticles Quench Fluorescence by Phase Induced
Radiative Rate Suppression, Nano Letters, 5 (2005) 585-589.
[31] P. Anger, P. Bharadwaj, L. Novotny, Enhancement and Quenching of
Single-Molecule Fluorescence, Physical Review Letters, 96 (2006)
113002.
[32] K. Ray, R. Badugu, J.R. Lakowicz, Metal-Enhanced Fluorescence from
CdTe Nanocrystals: A Single-Molecule Fluorescence Study, Journal
of the American Chemical Society, 128 (2006) 8998-8999.
[33] K. Okamoto, S. Vyawahare, A. Scherer, Surface-plasmon enhanced
bright emission from CdSe quantum-dot nanocrystals, Journal of the
Optical Society of America B, 23 (2006) 1674-1678.
[34] O. Kulakovich, N. Strekal, A. Yaroshevich, S. Maskevich, S.
Gaponenko, I. Nabiev, U. Woggon, M. Artemyev, Enhanced
Luminescence of CdSe Quantum Dots on Gold Colloids, Nano Letters, 2
(2002) 1449-1452.
[35] M. Rycenga, C.M. Cobley, J. Zeng, W. Li, C.H. Moran, Q. Zhang, D.
Qin, Y. Xia, Controlling the Synthesis and Assembly of Silver
Nanostructures for Plasmonic Applications, Chemical Reviews, 111
(2011) 3669-3712.
[36] J. Gersten, A. Nitzan, Spectroscopic properties of molecules interacting
with small dielectric particles, The Journal of Chemical Physics, 75
(1981) 1139-1152.
[37] A.D. McFarland, M.A. Young, J.A. Dieringer, R.P. Van Duyne,
Wavelength-Scanned Surface-Enhanced Raman Excitation
Spectroscopy, The Journal of Physical Chemistry B, 109 (2005) 11279-
11285.
[38] B. Wiley, Y. Sun, B. Mayers, Y. Xia, Shape-Controlled Synthesis of
Metal Nanostructures: The Case of Silver, Chemistry – A European
Journal, 11 (2005) 454-463.
[39] A.M. Schwartzberg, J.Z. Zhang, Novel Optical Properties and Emerging
Applications of Metal Nanostructures†, The Journal of Physical
Chemistry C, 112 (2008) 10323-10337.
[40] W.L. Barnes, A. Dereux, T.W. Ebbesen, Surface plasmon
subwavelength optics, Nature, 424 (2003) 824-830.
[41] W.A. Murray, W.L. Barnes, Plasmonic Materials, Advanced Materials,
19 (2007) 3771-3782.
[42] S. Link, M.B. Mohamed, M.A. El-Sayed, Simulation of the Optical
Absorption Spectra of Gold Nanorods as a Function of Their Aspect
Ratio and the Effect of the Medium Dielectric Constant, The Journal of
Physical Chemistry B, 103 (1999) 3073-3077.
[43] S. Lal, S. Link, N.J. Halas, Nano-optics from sensing to waveguiding,
Nat Photon, 1 (2007) 641-648.
[44] B. Wiley, Y. Sun, Y. Xia, Synthesis of Silver Nanostructures with
Controlled Shapes and Properties, Accounts of Chemical Research, 40
(2007) 1067-1076.
[45] A.L. Pyayt, B. Wiley, Y. Xia, A. Chen, L. Dalton, Integration of
photonic and silver nanowire plasmonic waveguides, Nat Nano, 3 (2008)
660-665.
[46] M. Rang, A.C. Jones, F. Zhou, Z.-Y. Li, B.J. Wiley, Y. Xia, M.B.
Raschke, Optical Near-Field Mapping of Plasmonic Nanoprisms, Nano
Letters, 8 (2008) 3357-3363.
[47] E.L. Ru, P. Etchegoin, Principles of Surface-Enhanced Raman
Spectroscopy: and related plasmonic effects, Elsevier Science, 2008.
[48] G.A. Bhaduri, R. Little, R.B. Khomane, S.U. Lokhande, B.D. Kulkarni,
B.G. Mendis, L. Šiller, Green synthesis of silver nanoparticles using
sunlight, Journal of Photochemistry and Photobiology A: Chemistry,
258 (2013) 1-9.
[49] L.H. Lie, M. Duerdin, E.M. Tuite, A. Houlton, B.R. Horrocks,
Preparation and characterisation of luminescent alkylated-silicon
quantum dots, Journal of Electroanalytical Chemistry, 538–539 (2002)
183-190.
[50] Y. Mochizuki, M. Fujii, S. Hayashi, T. Tsuruoka, K. Akamatsu,
Enhancement of photoluminescence from silicon nanocrystals by metal
nanostructures made by nanosphere lithography, J. Appl. Phys., 106
(2009).
[51] N.A. Harun, B.R. Horrocks, D.A. Fulton, Enhanced Raman and
luminescence spectra from co-encapsulated silicon quantum dots and
Au-Ag nanoalloys, Chemical Communications, (2014).
[52] M. Picquart, Vibrational model behavior of SDS aqueous solutions
studied by Raman scattering, The Journal of Physical Chemistry, 90
(1986) 243-250.
[53] CDS. Chemical Database Service, Daresbury, in, 2014.
[54] D.A. Shirley, High-Resolution X-Ray Photoemission Spectrum of the
Valence Bands of Gold, Physical Review B, 5 (1972) 4709-4714.
[55] S.M. Barnett, N. Harris, J.J. Baumberg, Molecules in the mirror: how
SERS backgrounds arise from the quantum method of images, Physical
Chemistry Chemical Physics, 16 (2014) 6544-6549.
[56] L.J. Bellamy, The Infra-red Spectra of Complex Molecules, Chapman
and Hall, 1975.
[57] Y. Chao, L. Siller, S. Krishnamurthy, P.R. Coxon, U. Bangert, M. Gass,
L. Kjeldgaard, S.N. Patole, L.H. Lie, N. O'Farrell, T.A. Alsop, A.
Houlton, B.R. Horrocks, Evaporation and deposition of alkyl-capped
silicon nanocrystals in ultrahigh vacuum, Nat Nano, 2 (2007) 486-489.
[58] K.A. Littau, P.J. Szajowski, A.J. Muller, A.R. Kortan, L.E. Brus, A
luminescent silicon nanocrystal colloid via a high-temperature aerosol
reaction, The Journal of Physical Chemistry, 97 (1993) 1224-1230.
[59] T. Mohanty, N.C. Mishra, A. Pradhan, D. Kanjilal, Luminescence from
Si nanocrystal grown in fused silica using keV and MeV beam, Surface
and Coatings Technology, 196 (2005) 34-38.
[60] G. Faraci, S. Gibilisco, P. Russo, A.R. Pennisi, S. La Rosa, Modified
Raman confinement model for Si nanocrystals, Physical Review B, 73
(2006).
[61] Y. Duan, J.F. Kong, W.Z. Shen, Raman investigation of silicon
nanocrystals: quantum confinement and laser-induced thermal effects,
Journal of Raman Spectroscopy, 43 (2012) 756-760.
[62] L.V. Mercaldo, E.M. Esposito, P.D. Veneri, G. Fameli, S. Mirabella, G.
Nicotra, First and second-order Raman scattering in Si nanostructures
within silicon nitride, Applied Physics Letters, 97 (2010). [63] G. Cazzolli, S. Caponi, A. Defant, C.M.C. Gambi, S. Marchetti, M.
Mattarelli, M. Montagna, B. Rossi, F. Rossi, G. Viliani, Aggregation
processes in micellar solutions: a Raman study, Journal of Raman
Spectroscopy, 43 (2012) 1877-1883.
[64] F.M. Dickinson, T.A. Alsop, N. Al-Sharif, C.E.M. Berger, H.K. Datta,
L. Siller, Y. Chao, E.M. Tuite, A. Houlton, B.R. Horrocks, Dispersions
of alkyl-capped silicon nanocrystals in aqueous media:
photoluminescence and ageing, Analyst, 133 (2008) 1573-1580.
[65] K. Žídek, I. Pelant, F. Trojánek, P. Malý, P. Gilliot, B. Hönerlage, J.
Oberlé, L. Šiller, R. Little, B.R. Horrocks, Ultrafast stimulated emission
due to quasidirect transitions in silicon nanocrystals, Physical Review B,
84 (2011) 085321.
[66] K. ídek, F. Trojánek, P. Malý, L. Ondi, I. Pelant, K. Dohnalová, L. iller,
R. Little, B.R. Horrocks, Femtosecond luminescence spectroscopy of
core states in silicon nanocrystals, Optics Express, 18 (2010) 25241-
25249.
[67] S. Chandra, J. Doran, S.J. McCormack, M. Kennedy, A.J. Chatten,
Enhanced quantum dot emission for luminescent solar concentrators
using plasmonic interaction, Sol. Energy Mater. Sol. Cells, 98 (2012)
385-390.