Sign Pattern Matrices that Admit P0 Matrices

A P0-matrix is a real square matrix all of whose principle minors are nonnegative. In this paper, we consider the class of P0-matrix. Our main aim is to determine which sign pattern matrices are admissible for this class of real matrices.





References:
[1] A. Berman, R.J. Plemmons, Nonnegative Matrices in the Mathematical
Sciences, SIAM, 1994.
[2] M. Fiedler, R. Grone, Characterizations of sign patterns of inversepositive
matrices, Linear Algebra Appl., 40 (1981) 237-245.
[3] J. Gross, J. Yellen, Graph Theory and its Applications, CRC Press, 1998.
[4] L. Hogben (Ed.), Handbook of Linear Algebra (Discrete Mathematics
and its Applications), Chapman & Hall/CRC, 2006 (R. Brualdi, A.
Greenbaum, R. Mathias (Associated Ed.).
[5] R.A. Horn, C.R. Johnson, Matrix Analysis, Cambridge University Press,
New York, 1955.
[6] C.R. Johnson, Sign patterns of inverse nonnegative matrices, Linear
Algebra Appl., 55 (1983) 69-80.
[7] C.R. Johnson, F.T. Leighton, H.A. Robinson, Sign patterns of inversepositive
matrices, Linear Algebra Appl., 24 (1979) 75-83.
[8] C. Mendes Ara'ujo, Juan R. Torregrosa, Sign pattern matrices that admit
M-, N-, P- or inverse M-matrices, Linear Algebra Appl., 431 (2009) 724-
731.
[9] C. Mendes Ara'ujo, Juan R. Torregrosa,Sign pattern matrices that admit
P0 matrices, Linear Algebra Appl., 435 (2011) 2046-2053.