Semi-Lagrangian Method for Advection Equation on GPU in Unstructured R3 Mesh for Fluid Dynamics Application

Numerical integration of initial boundary problem for advection equation in 3 ℜ is considered. The method used is 
conditionally stable semi-Lagrangian advection scheme with high order interpolation on unstructured mesh. In order to increase time step integration the BFECC method with limiter TVD correction is used. The method is adopted on parallel graphic processor unit environment using NVIDIA CUDA and applied in Navier-Stokes solver. It is shown that the calculation on NVIDIA GeForce 8800 
GPU is 184 times faster than on one processor AMDX2 4800+ CPU. The method is extended to the incompressible fluid dynamics solver. Flow over a Cylinder for 3D case is compared to the experimental data.





References:
[1] A D Polyanin; V F Zaitsev. Handbook of Nonlinear Partial Differential
Equations. - Chapman & Hall/CRC Press, Boca Raton, 2003.
[2] Douglas Enright, Frank Losasso, Ronald Fedkiw. A Fast and Accurate
Semi-Lagrangian Particle Level Set Method. // Proceedings of the 4th
ASME-JSME Joint Fluids Engineering Conference, number
FEDSM2003, 45144. ASME, 2003.
[3] Chorda R, Blasco J.A., Fueyo N. An efficient particle-locating algorithm
for application in arbitrary 2D and 3D grids// Int. J. of Multiphase Flow,
28, 2002 N9, 1565-1580.
[4] Volkov K.N., Emelyanov V.N. Implementation of the Lagrangian
approach to the description of gas-particle flows on unstructured
meshes.// J. Numerical methods and programming. Vol9, pp. 19-33,
2008.
[5] Paoliy R. , Poinsotz T., Shari K. Testing semi-Lagrangian schemes for
two-phase flow applications.// Proceedings of the Summer Program
2006, pp213-222. Center for Turbulence Research, Toulouse, France.
[6] Chunlei Liang, Evstigneev N., A study of kinetic energy conserving
scheme using finite volume collocated grid for LES of a channel flow. //
Proceedings of the international conference on numerical methods in
fluid dynamics. King's College London, Strand, WC2R 2LS, 2006,
pp.61-79.
[7] Evstigneev N.M., Magnitskii N.A., Sidorov S.V. On the nature of
turbulence flow in the backward face step problem // J. Differential
equations, Vol.45, 2009, pp.69-73.
[8] Evstigneev N.M. Numerical integration of Poisson's equation using a
graphics processing unit with CUDA-technology // J. Numerical
methods and programming., Vol10, pp. 268-274, 2009.
[9] Evstigneev N.M., Magnitskii N.A., Sidorov S.V. New approach to the
incompressible flow turbulence. // Proc. ISA RAS, Vol33, pp.49-65,
2008.
[10] Evstigneev N.M. Solution of 3D nonviscous compressible gas equations
on unstructured meshes using the distributed computing approach. // J.
Numerical methods and programming., Vol8, pp. 252-264, 2007.
[11] Cignoni P., Montani C., Scopigno R., Dewall: A fast divide & conquer
Delaunay triangulation algorithm in Ed // Computer J. 2006. 19, No2, pp
178-181.
[12] T. F. Dupont, Y. Liu. Back and forth error compensation and correction
methods for removing errors induced by uneven gradients of the level
set function. // Journal of Computational Physics, vol. 190, no. 1, pp.
311-324, 2003.
[13] http://developer.download.nvidia.com/compute/cuda/2_0/docs/NVIDIA
_CUDA_Programm ing_Guide_2.0.pdf
[14] A. Roshko. Experiments on the ow past a circular cylinder at very high
Reynolds number.// Journal of Fluid Mechanics, 10:345-356, 1961.