Preparation and Characterization of Polyaniline (PANI)-Platinum Nanocomposite

Polyaniline is an indispensible component in lightemitting devices (LEDs), televisions, cellular telephones, automotive, corrosion-resistant coatings, actuators etc. The electrical conductivity properties was found be increased by introduction of metal nano particles. In the present study, an attempt has been made to utilize platinum nano particles to achieve the improved electrical properties. Polyaniline and Pt-polyaniline composite are synthesized by electrochemical routes. X-ray diffractometer confirms the amorphous nature of polyaniline. The Bragg’s diffraction peaks correspond to platinum nanoparticles in Pt-polyaniline composite and thermogravimetric analyzer indicates its decomposition at certain temperature. The Scanning Electron Micrographs of colloidal platinum nanoparticles were spherical, uniform shape in the composite. The current-voltage (I-V) characteristics of the PANI and composites were also studied which indicate a significant decreasing resistivity than PANI-Platinum after introduction of pt nanoparticles in the matrix of polyaniline (PANI).




References:
[1] Yuvraj Singh Negi and P. V. Adhyapak, Polymer Research and
Development Division, Centre for Materials for Electronics Technology,
42, 35-53.
[2] H. Letheby, Journal of the Chemical Society 15(1862)
[3] Di Wei and Ari Ivaska “Electrochemical Biosensors Based on
Polyaniline” Chem. Anal: (Warsaw), 51, (2006), 839.
[4] Rosa Vera, Hugo Romero, Eduardo Ahumada, J. Chil. Chem. Soc.v.48
(2003).
[5] Shi, G. Q., Jin, S. Xue, G. Li, C. A conducting polymer film stronger
than Aluminum Science 1995, 267, 994-996.
[6] A. F. Diaz, K. K. Kanazawa, G. P. Gardini Chemical Communications
14 (1979) 635.
[7] A. G. Mac Diarmid, Angewandte Chemie –International Edition 40
(2001) 2581.
[8] E. Menefee, Y. H. Pao, Journal of Chemical Physics 36 (1962) 3472.
[9] V. V. J. Walatka, M. M. Labes, J. H. Perlstein, Physical Review Letters
31.
[10] W. D. Gill, W. Bludau, R. H. Geiss, P. M. Grant, R. L. Greene, J. J.
Mayerle, G. B. Street, Physical Review Letters 38 (1977) 1305.
[11] G. Natta, G. Mazzanti, P. Corradini, Stereospecific polymerization of
acetylene,’ Attiaccad. Nazi Lincei Rend. 25 (1958) 3.
[12] C. K. Chiang, S. C. Gau, C. R. J. Fincher Y. W. Park, A. G.
MacDiarmid, A. J. Heeger, Applied Physics Letters 33 (1978) 18.
[13] R. B. Seymour, Conductive Polymers; Polymer Science and
Technology, 1st Plenum Press, New York, 1981.
[14] Self doped conducting polymers by Michael. S. Fruend and Bhavana
Deore (2007) 20-25.
[15] Z. Kurmaev et al 2001 J. Phys: Cond1. R. Gangopadhaya, A. De, Chem.
Mater. 12, 608 (2000).
[16] Z. Peng, L. Guo, Z, Zhang, B. Tesche, T. Wike, D. Ogermann, S. Hu, K.
Kleinermanns, Langmuir 22,10915 (2006).
[17] R McNeill, DE Weiss and D. Willis Australian Journal of Chemistry
47718 (1965).
[18] J. Stejskal, R. G. Gilbert Pure Appl. Chem., Vol.74, No.5, pp.857–867,
(2002).
[19] K. Gupta, P. C. Jana, A. K. Meikap Synthetic Metals Vol. 160, pp 1566–
1573(2010).