Predicting Effective Permeability of Nanodielectric Composites Bonded by Soft Magnetic Nanoparticles

Dielectric materials play an important role in broad applications, such as electrical and electromagnetic applications. This research studied the prediction of effective permeability of composite and nanocomposite dielectric materials based on theoretical analysis to specify the effects of embedded magnetic inclusions in enhancing magnetic properties of dielectrics. Effective permeability of Plastics and Glass nanodielectrics have been predicted with adding various types and percentages of magnetic nano-particles (Fe, Ni-Cu, Ni-Fe, MgZn_Ferrite, NiZn_Ferrite) for formulating new nanodielectric magnetic industrial materials. Soft nanoparticles powders that have been used in new nanodielectrics often possess the structure of a particle size in the range of micrometer- to nano-sized grains and magnetic isotropy, e.g., a random distribution of magnetic easy axes of the nanograins. It has been succeeded for enhancing characteristics of new nanodielectric magnetic industrial materials. The results have shown a significant effect of inclusions distribution on the effective permeability of nanodielectric magnetic composites, and so, explained the effect of magnetic inclusions types and their concentration on the effective permeability of nanodielectric magnetic materials.





References:
[1] H. Shokrollahi and K. Janghorban, "Soft magnetic composite materials (SMCs),” J. Mater. Process. Techn., vol. 189, pp. 1–12, Jul. 2007.
[2] L. A. Dobrzanski, M. Drak, and B. Ziebowicz, "New possibilities ofcomposite materials application: Materials of specific magnetic properties,” J. Mater. Process. Techn., vol. 191, pp. 352–355, 2007.
[3] E. A. Périgo, S. Nakahara, Y. Pittini-Yamada, Y. de Hazan, and T. Graule, "Magnetic properties of soft magnetic composites prepared with crystalline and amorphous powders,” J. Magn. Magn. Mater., vol.323, pp. 1938–1944, 2011.
[4] P.Kollár, J. Füzer, R. Bureˇs, and M. Fáberová, "AC magnetic properties of Fe/based composite materials,” IEEE Trans. Magn., vol. 46, no. 2, pp. 467–470, 2010.
[5] P. Kollár, L. Hegedüs, J. Füzer, R. Bureˇs, and M. Fáberová, "AC magnetic properties of vitroperm based composite materials,” Acta Physica Plonica A, vol. 118, pp. 787–789, 2010.
[6] G. Q. Lin, Z. W. Li, L. Chen, Y. P. Wu, and C. K. Ong, "Influence of demagnetizing field on the permeability of soft magnetic composites,” J. Magn. Magn. Mater., vol. 305, pp. 291–295, 2006.
[7] F. Alves, C. Ramiarinjaona, S. Bérenguer, R. Lebourgeois, and T. Waeckerlé, "High-frequency behavior of magnetic composites based on FeSiBCuNb particles for power electronics,” IEEE Trans. Magn., vol. 38, no. 5, pp. 3135–3137, 2002.
[8] Jana Füzerová, JánFüzer, Peter Kollár, LukáˇsHegedüs, Radovan Bureˇs, and Mária Fáberová, "Analysis of the Complex Permeability Versus Frequency of Soft Magnetic Composites Consisting of Iron and Fe73Cu1Nb3Si16B7” IEEE Transactions on Magnetics, Vol. 48, NO. 4, pp. 1545-1548, April, 2012.
[9] H. Waki, H. Igarashi, T. Honma, "Estimation of Effective Permeability of Magnetic Composite Materials” IEEE Transactions on Magnetics, VOL. 41, NO. 5, pp. 1520-1523, May, 2005.
[10] E. E. Gonzo, M. L. Parentis, and J. C. Gottifredi, "Estimating models for predicting effective permeability of mixed matrix membranes” Journal of Membrane Science 277, 46–54, 2006.
[11] L. Z. Wu, J. Ding,a_ H. B. Jiang, and C. P. Neo, L. F. Chen, and C. K. Ong, "High frequency complex permeability of iron particles in a nonmagnetic matrix” J. Appl. Phys. 99, 083905, 2006.
[12] M. Anhalt and B. Weidenfeller, "Magnetic properties of polymer bonded soft magnetic particles for various filler fractions” J. Appl. Phys. 101, 023907, 2007.
[13] T. Liu, P. H. Zhou, L. J. Deng, and W. Tang, "Spatial orientation and position distribution effect on the effective permeability of composites consisting of aligned flakes” J. Appl. Phys. 106, 114904, 2009.
[14] M. Anhalt, and B. Weidenfeller, "Magnetic properties of polymer bonded soft magnetic particles for various filler fractions” J. Appl. Phys. 101, 023907, 2007.
[15] Y. D. Zhang, S. H. Wang, D. T. Xiao, J. I. Budnick, and W. A. Hines, "Nanocomposite Co/SiO2 Soft Magnetic Materials” IEEE Transactions on Magnetics, Vol. 37, No. 4, pp. 2275-2277, July, 2001.
[16] Francisco de Assis Olímpio Cabral, Fernando Luis de Araujo Machado, José Humberto de Araujo, João Maria Soares, Alexandre Ricalde Rodrigues, and Armando Araujo, "Preparation and Magnetic Study of the CoFe2O4-CoFe2Nanocomposite Powders” IEEE Transactions on Magnetics, Vol. 44, No. 11, November, 2008.
[17] G. Q. Lin, Y. P.Wu2, and Z. W. Li, "Improvement of the Electromagnetic Properties in Composites With Flake-Like Co2Z Powders by Molten-Salt Synthesis” IEEE Transactions on Magnetics, Vol. 42, No. 10, pp.3326-3328, October, 2006.
[18] H. Chiriac, and N. Lupu, "New FeNbB-Based Bulk Amorphous and Nanocomposite Soft Magnetic Alloys” IEEE Transactions on Magnetics, Vol. 41, No. 10, pp.3289-3291, October, 2005.
[19] S. Sugimoto, K. Haga, T. Kagotani, and K. Inomata, "Magnetic Properties of Co/(CoNi)Fe2O4Nanocomposite Magnet Powders” IEEE Transactions on Magnetics, VOL. 41, NO. 10, pp. 3971-3873, October 2005.
[20] B. Tellini, and M. Bologna, "Magnetic Composite Materials and Arbitrary B-H Relationships” IEEE Transactions On Magnetics, Vol. 46, NO. 12, pp.3967-3972, December, 2010.
[21] Y. Zhang , Sh. Ohnuma , and H. Masumoto, "Soft Magnetic Co-(TiN) Composite Films Realized within a Wide-Range of Cobalt Content” IEEE Transactions on Magnetics, Vol. 47, No. 10, pp. 3795-37-98, October, 2011.