Physicochemical Characterization of MFI–Ceramic Hollow Fibres Membranes for CO2 Separation with Alkali Metal Cation

This paper present some preliminary work on the
preparation and physicochemical caracterization of nanocomposite
MFI-alumina structures based on alumina hollow fibres. The fibers
are manufactured by a wet spinning process. α-alumina particles were
dispersed in a solution of polysulfone in NMP. The resulting slurry is
pressed through the annular gap of a spinneret into a precipitation
bath. The resulting green fibres are sintered. The mechanical strength
of the alumina hollow fibres is determined by a three-point-bending
test while the pore size is characterized by bubble-point testing. The
bending strength is in the range of 110 MPa while the average pore
size is 450 nm for an internal diameter of 1 mm and external diameter
of 1.7 mm. To characterize the MFI membranes various techniques
were used for physicochemical characterization of MFI–ceramic
hollow fibres membranes: The nitrogen adsorption, X-ray
diffractometry, scanning electron microscopy combined with X
emission microanalysis. Scanning Electron Microscopy (SEM) and
Energy Dispersive Microanalysis by the X-ray were used to observe
the morphology of the hollow fibre membranes (thickness,
infiltration into the carrier, defects, homogeneity). No surface film,
has been obtained, as observed by SEM and EDX analysis and
confirmed by high temperature variation of N2 and CO2 gas
permeances before cation exchange. Local analysis and characterise
(SEM and EDX) and overall (by ICP elemental analysis) were
conducted on two samples exchanged to determine the quantity and
distribution of the cation of cesium on the cross section fibre of the
zeolite between the cavities.





References:
[1] Kalipcilar H, Falconer JL, Noble RD: Preparation of B-ZSM-5
membranes on a monolith support. J Membr Sci 2001, 149 (1):141-144.
[2] Piera E, Giroir-Fendler A, Dalmon JA, Moueddeb H, Coronas J,
Menendez M, Santamaria J: Separation of alcohols and alcohols/O2
mixtures using zelite MFI membranes. J Membr Sci 1998, 142:97-109.
[3] Nishiyama N, Ichioka K, Egashira Y, Ueyama K, Gora L, Zhu W,
Kapteijn F, Moulijn J: Référence 91_Chapitre de Anne Julpe. In in Proc
ICIM8- 8th International Conference on Inorganic Membranes;
Cincinnati, OH, (USA). Y.S. Lin, F.T. Akin (eds.); 2004: 216.
[4] Bowen TC, Kalipcilar H, Falconer JL, Noble RD: Pervaporation of
organic/water mixtures through B-ZSM-5 zeolite membranes on
monolith supports. J Mater Sci 2003, 215:235-247.
[5] Lai R, Yan Y, Gavalas GR: Growth of ZSM-5 films on alumina and
other surfaces. Microp Mesop Mater 2000, 37:9-19.
[6] Lin Z, Rocha J, Navajas A, Tellez C, Coronas J, Santamaria J: Synthesis
and characterisation of titanosilicate ETS-10 membranes. Microp Mesop
Mater 2004, 67:79-86.
[7] Uemiya S, Sato N, Ando H, Kude Y, Matsuda T, Kikuchi E: Separation
of hydrogen through palladium thin film supported on a porous glass
tube J Membr Sci 1991, 56:303-313.
[8] Shelekhin AB, Pien S, Ma YH: Permeability, surface area, pore volume
and pore size of Vycor glass membrane heat-treated at high
temperatures. JMembr Sci 1995, 103:39-43.
[9] Li A, Xiong G, Gu J, Zheng L: Preparation of Pd/ceramic composite
membrane, 1. Improvement of the conventional preparation technique. J
Membr Sci 1996, 110:257-260.
[10] Lee D-W, Lee Y-G, Seung-Eun Nam, Ihm S-K, Lee K-H: Study on the
variation of morphology and separation behavior of the stainless steel
supported membranes at high temperature. J Membr Sci 2003, 220:137-
153.
[11] Armor JN: Applications of catalytic inorganic membrane reactors to
refinery products. J Membr Sci 1998, 147:217-233.
[12] Dittmeyer R, Hollein V, Daub K: Membrane reactors for hydrogenation
and dehydrogenation processes based on supported palladium. J
Molecular Catalysis A: Chemical 2001, 173:135-184.
[13] Julbe A: Zeolite membranes - a short overview, in Studies in surface
science and catalysis. Stud Surf Sci Catal 2005, 157 135-160.
[14] Ciavarella P: Etude expérimentale modilisation du transport gazeux dans
les membranes zéolitiques de type MFI. Applicationà la
deshydrogenation de l'isobutane en reacteurcatalytique à membrane.
Thèse de Doctorat. Claude Bernard -LYON1, Ecole Chimie; 1999.
[15] S. Miachon, I. Kumakiri, P. Ciavarella, L. van Dyk, K. Fiaty, Y.
Schuurman, J.-A. Dalmon, Nanocomposite MFI-alumina embranes via
pore-plugging synthesis: Specific transport and separation properties,
J. Membr. Sci. 298 (2007) 71.
[16] A. Alshebani, M. Pera-Titus, E. Landrivon, Th. Schiestel, S. Miachon,
J.-A. Dalmon, Nanocomposite MFI - ceramic hollow fibres: prospects
for CO2 separation, Micropor. Mesopor. Mater. 115 (2008) 197.
[17] S. Miachon, E. Landrivon, M. Aouine, Y. Sun, I. Kumakiri, Y. Li, O.
Pachtová Prokopová, N. Guilhaume, A. Giroir-Fendler, H. Mozzanega,
J.-A. Dalmon, Nanocomposite MFI-alumina membranes via poreplugging
synthesis: Preparation and morphological characterisation, J.
Membr. Sci. 281 (2006) 228.
[18] S. Miachon, I. Kumakiri, P. Ciavarella, L. van Dyk, K. Fiaty, Y.
Schuurman, J.-A. Dalmon, Nanocomposite MFI-alumina membranes
via pore-plugging synthesis: Specific transport and separation
properties, J. Membr. Sci. 298 (2007) 71.
[19] J. Hedlund, F. Jareman, A.-J. Bons, M. Anthonis, A masking
technique for high quality MFI membranes, J. Membr. Sci. 222 (2003)
163.