Physical Properties of Uranium Dinitride UN2 by Using Density Functional Theory (DFT and DFT+U)

Physical properties of uranium dinitride (UN2) were
investigated in detail using first principle calculations based on
density functional theory (DFT). To study the strong correlation
effects due to 5f uranium valence electrons, the on-site coulomb
interaction correction U via the Hubbard-like term (DFT+U) was
employed. The UN2 structural, mechanical and thermodynamic
properties were calculated within DFT and Various U of DFT+U
approach.
The Perdew–Burke–Ernzerhof (PBE.5.2) version of the
generalized gradient approximation (GGA) is used to describe the
exchange-correlation with the projector-augmented wave (PAW)
pseudo potentials.
A comparative study shows that results are improved by using the
Hubbard formalism for a certain U value correction like the structural
parameter. For some physical properties the variation versus
Hubbard-U is strong like Young modulus but for others it is weakly
noticeable such as bulk modulus.
We noticed also that from U=7.5 eV, elastic results don’t agree
with the cubic cell because of the C44 values which turn out to be
negative.





References:
[1] Hiroki Shibata, TomohitoTsuru, Masaru Hirata, Yoshiyuki Kaji, First
principles study on elastic properties and phase transition of NpN;
Journal of Nuclear Materials 401 (2010) 113–117
[2] Ito, T. Kumigashira, H.; Souma, S.; Tahakashi, T. ; Suzuki, T. J Magn
Mater 2001,68 , 226
[3] Matzke, H. Science of Advanced LMFBR Fuels; North Holland;
Amesterdam, 1986.
[4] N. A. Curry, Proc. Phys. Soc., 1965, 86, 1193.
[5] L. Petit, A. Svane, Z. Szotek, W. Temmerman, Science 301 (2003) 498.
[6] A. Svane, L. Petit, Z. Szotek, W.M. Temmerman, Phys. Rev. B 76
(2007) 115116.
[7] P. Erdös, J.M. Robinson, The Physics of Actinide Compounds, Plenum,
New York, 1983. pp. 4.
[8] B. Sun, P. Zhang, X.-G. Zhao, J. Chem. Phys. 128 (2008) 084705.
[9] S.L. Dudarev, M.R. Castell, G.A. Botton, S.Y. Savrasov, C.
Muggelberg, G.A.D. Briggs, A.P. Sutton, D.T. Goddard, Micron 31
(2000) 363.
[10] Younsuk Yun, Hanchul Kim, Heemoon Kim, and Wangheon Park ;
Abinition calculations of strongly correlated electrons: antiferromagnetic
ground state of UO2 Nuclear Engineering and Technology, Vol 37, N°3;
June 2005
[11] P. Larson, W.R.L. Lambrecht, A. Chantis, M. van Schilfgaarde, Phys.
Rev. B 75 (2007) 045114.
[12] G. Jomard, B. Amadon, F. Bottin, M. Torrent, Phys. Rev. B 78 (2008)
075125.
[13] B. Dorado, B. Amadon, M. Freyss, M. Bertolus, Phys. Rev. B 79 (2009)
235125.
[14] Denis Gryaznov, Eugene Heifets and Eugene Kotomin; The firstprinciples
treatment of the electron-correlation and spin–orbital effects
in uranium mononitride nuclear fuels; Phys. Chem. Chem. Phys., 2012,
14, 4482–4490
[15] P.E. Blöchl, Phys. Rev. B 50 (1994) 17953.
[16] J.P. Perdew, K. Burke, Y. Wang, Phys. Rev. B 54 (1996) 16533.
[17] G. Kresse and J. Furthmuller, Comput. Mater. Sci., 1996, 6, 15.
[18] G. Kresse and J. Furthmuller, VASP the Guide, University of Vienna,
Vienna, June 1, 2012
[19] Boris Dorado, Bernard Amadon, Michel Freyss, Marjorie Bertolus,
Phys. Rev. B 79 (2009) 235125.
[20] H.J. Monkhorst, J.D. Pack, Phys. Rev. B 13 (1976) 5188.
[21] Y. Le Page and P. Saxe, Phys. Rev. B 65, 104104 (2002).
[22] W.M. Olson, R.N.R. Mulford, J. Phys. Chem. 70 (1966) 2932–2934.
[23] M. Born, K. Huang, Theory of Crystal Lattices, Clarendon, Oxford,
1956.
[24] M.Y. Chou et al; Physical Review B, Volume 28, Number 8, October
83.
[25] A.R. Hall, J. Nucl. Mater. 37 (1969) 314–323.
[26] R. Hill, Proc. Phys. Soc. Lond. 65 (1952) 349–354.
[27] B. Mayer, H. Anton, E Bott, M. Methfessel, J. Sticht and P.C. Schmidt ,
Intermetallics 11 (2003) 23.
[28] R.A. Evarestov, A.I. Panin, A.V. Bandura, M.V. Losev, J. Phys.: Conf.
Ser. 117(2008) 012015.
[29] R.E. Rundle, N.C. Baenziger, A.S. Wilson, R.A. McDonald, J. Am.
Chem. Soc. 70(1948) 90.
[30] Yong Lu, Bao-Tian Wang, Rong-Wu Li, Hong-Liang Shi, Ping Zhang;
Structural, electronic, mechanical, and thermodynamic properties of
UN2: Systematic density functional calculations ; Journal of Nuclear
Materials 410 (2011) 46–51
[31] E.A. Kotomin, R.W. Grimes, Y. Mastrikov, N.J. Ashley, J. Phys.:
Condens. Matter 19 (2007) 106208.
[32] Y. Yun, H. Kim, H. Kim, K. Park, Nucl. Eng. Technol. 37 (2005) 3
[33] J.-P. Dancausse, S. Heathman, U. Benedict, L. Gerward, J. Staun Olsen,
F. Hulliger, J. Alloys Compd. 191 (1993) 309.
[34] H.J. Matzke, Science of Advanced LMFBR Fuels, North-Holland,
Amsterdam, 1986.
[35] M. Born, K Huang, Dynamical Theory of Crystal Lattices, Oxford,
Clarendon (1956).
[36] Atsushi Togo, Fumiyasu Oba, and Isao Tanaka, First-principles
calculations of the ferroelastic transition between rutile-type and CaCl2-
type SiO2 at high pressures”, Phys. Rev. B, 78, 134106 (2008)
[37] P. F. Weck et al; First-principles study of single-crystal uranium monoand
dinitride; chemical physics Letters 2007G. O. Young, “Synthetic
structure of industrial plastics (Book style with paper title and editor),”
in Plastics, 2nd ed. vol. 3, J. Peters, Ed. New York: McGraw-Hill, 1964,
pp. 15–64.