Physical Habitat Simulation and Comparison within a Lerma River Reach, with Respect to the Same but Modified Reach, to Create a Linear Park

In this work, the Ictalurus punctatus species estimated available physical habitat is compared with the estimated physical habitat for the same but modified river reach, with the aim of creating a linear park, along a length of 5 500 m. To determine the effect of ecological park construction, on physical habitat of the Lerma river stretch of study, first, the available habitat for the Ictalurus punctatus species was estimated through the simulation of the physical habitat, by using surveying, hydraulics, and habitat information gotten at the river reach in its actual situation. Second, it was estimated the available habitat for the above species, upon the simulation of the physical habitat through the proposed modification for the ecological park creation. Third, it is presented a comparison between both scenarios in terms of available habitat estimated for Ictalurus punctatus species, concluding that in cases of adult and spawning life stages, changes in the channel to create an ecological park would produce a considerable loss of potentially usable habitat (PUH), while in the case of the juvenile life stage PUH remains virtually unchanged, and in the case of life stage fry the PUH would increase due to the presence of velocities and depths of lesser magnitude, due to the presence of minor flow rates and lower volume of the wet channel. It is expected that habitat modification for linear park construction may produce the lack of Ictalurus punktatus species conservation at the river reach of the study.




References:
[1] K. D. Bovee, B. L. Lamb, J. M. Bartholow, C.B. Stalnaker, J. Taylor &
J. Enriksen, Stream habitat analysis using the instream flow incremental
methodology. U.S. Geological Survey, Biological Resources Division
Information and Technology Report USGS/BRD-1998-0004. viii+131
pp, 1998.
[2] K.D. Bovee, A guide to stream habitat analysis using the instream flow
incremental methodology. Fort Collin, CO., U. S. Fish and Wildlife
Service. 251, 1992.
[3] CONAGUA (Comision Nacional del Agua), Banco Nacional de Datos
de Aguas Superficiales (BANDAS). México, D.F., 2010.
[4] CONAGUA (Comisión Nacional del Agua), Cuencas hidrológicas con
su disponibilidad media anual de aguas superficiales publicada.
http://www.conagua.gob.mx/Espaniol/TmpContenido.aspx?id=Documentos%20relacionados%20con:%20Instrumentos%20de%20Gesti%C3%
B3n%20del%20Agua|Documentos%20relacionados%20con:%20Instrumentos%20de%20Gesti%C3%B3n%20del%20Agua|0|0|264|0|0. México. 2008, Web consulted october 25th 2009.
[5] CONAGUA (Comisión Nacional del Agua), Ley de Aguas Nacionales y
su Reglamento. México. 2012, 209 p.
[6] P. Correa, G., Atlas Geográfico del Estado de Michoacán. EDDISA,
Morelia, México, 1978.
[7] Florida Museum of Natural History, Taxonomic Information on Cat Fish
http://www.flmnh.ufl.edu/catfish/. Consultada en junio de 2010.
[8] E. E. Herricks, J. B. Stall, J.W. Eheart, A. B. Libby, S.F. Railback, &
M.J. Sale, Instream flow needs analysis of the Little Wabash River
Basin. Dept. Civil Eng., University of Illinois, Urbana, IL. . 1980, 150
pp.
[9] Instituto de Ingeniería de la UNAM, Diagnostico Energético e
Hidráulico del Estado de Michoacán. Informe final de proyecto,
Morelia, Michoacán. 2005, 211pp.
[10] INE (Instituto Nacional de Ecología), Diagnóstico bio-físico y socioeconómico
de la cuenca Lerma-Chapala. México. 2003, 285pp.
[11] R.T. Milhous, Updike, & Schneider, D.M., Physical Habitat Simulation
System Reference Manual - Version II. Instream Flow Information
Paper No. 26. U.S. Fish and Wild. Serv. Biol. Rep. 89 (16). v.p. 1989.
[12] R.T. Milhous, Wegner, D.L, y Waddle, T., Physical Habitat Simulation
System User’s Guide. Instream Flow Information Paper No. 11. U.S.
Fish and Wildlife Service. FWS/OBS-81/43. 1984.
[13] W. S. Platts, , W. F. Megahan, & G. W. Minshall, Methods for
evaluating stream riparian, and biotic conditions. USDA Forest Service,
General Tech. Report. INT-138. Ogden, UT. 1983, 70 pp.
[14] R. A. Rueda Jasso, Pérez Munguía R., & Martínez Trujillo M., Informe
del análisis biológico de las poblaciones presentes y manejo ecológico
del meandro. Realizado dentro del Proyecto Fomix CONACYTGobierno
del Estado de Michoacán No, 73881. Morelia, Michoacán,
Mexico. 2010, 135pp.
[15] C. Stalnaker, Lamb, B.L., Henriksen, J., Bovee K., And Bartholow, J.,
The Instream Flow Incremental Methodology, A primer for IFIM.
Biological Report 29. U.S. Department of the Interior, National
Biological Service. Washington, D.C., 1995, 44 pp.
[16] R. E Tharme, A Global Perspective on Environmental Flow Assessment:
Emerging Trends in the Development and Application of Environmental
Flow Methodologies for Rivers. RIVER RESEARCH AND
APPLICATIONS 19: p. 397–441. 2003, Wiley InterScience.
[17] L.C. Van Rijn, Principles of fluid flow and surface waves in rivers,
stuaries, seas and oceans. Aqua publications, Amsterdam, The
Netherlands, 1990.
[18] T. J. Waddle, PHABSIM for Windows: user's manual and exercises.
Fort Collins, CO: U.S. Geological Survey. Open-File Report 01-340.
2001, 288 p.
[19] T. J. Waddle, Personal Communication, 2000.
[20] E. García, Determinación de un Régimen de Caudales Ecológicos para
el Cauce Natural (Meandro) del Río Lerma, que atraviesa la zona
conurbada de La Piedad, Michoacán y Santa Ana Pacueco, Guanajuato.
Proyecto FOMIX CONACYT-Gobierno del Estado de Michoacán No.
73881: Saneamiento del cauce natural (meandro) del Río Lerma e
integración del mismo a la dinámica urbana de La Piedad Michoacán.
Morelia, México. 2011, 45 p.