Parametrization of Piezoelectric Vibration Energy Harvesters for Low Power Embedded Systems

Matching an embedded electronic application with a
cantilever vibration energy harvester remains a difficult endeavour
due to the large number of factors influencing the output power.
In the presented work, complementary balanced energy harvester
parametrization is used as a methodology for simplification of
harvester integration in electronic applications. This is achieved
by a dual approach consisting of an adaptation of the general
parametrization methodology in conjunction with a straight forward
harvester benchmarking strategy. For this purpose, the design and
implementation of a suitable user friendly cantilever energy harvester
benchmarking platform is discussed. Its effectiveness is demonstrated
by applying the methodology to a commercially available Mide
V21BL vibration energy harvester, with excitation amplitude and
frequency as variables.




References:
[1] Ahmad, T. J., Arsalan, M., Black, M. J. et al., Piezoelectric Based
Flow Power Harvesting for Downhole Environment, SPE Middle East
Intelligent Oil and Gas Conference and Exhibition, Society of Petroleum
Engineers, pp. 1-8, doi:10.2118/176777-MS, 2015.
[2] Amrs, S. W., Townsend, C. P., Churchill, D. L., et al., Energy harvesting,
wireless structural health monitoring system, U.S. Patent No. 7,719,416,
filed 11 September 2006, published 18 May 2010.
[3] Ashraf, Q. M., Yusoff, M. I. M., Azman, A. A. et al., Energy
monitoring prototype for Internet of Things: Preliminary results, in
2015 IEEE 2nd World Forum on Internet of Things (WF-IoT), pp. 1-5,
doi:10.1109/WF-IoT.2015.7389157, 2015.
[4] Bandyopadhyay, S. and Chandrakasan, A. P., Platform Architecture for
Solar, Thermal, and Vibration Energy Combining With MPPT and Single
Inductor, in IEEE J. Solid-State Circuits, vol. 47, no. 9, pp. 2199-2215,
ISSN 0018-9200, doi:10.1109/JSSC.2012.2197239, 2012.
[5] Barbehenn, G. H., True Grid Independence: Robust Energy Harvesting
System for Wireless Sensors Uses Piezoelectric Energy Harvesting Power
Supply and Li-Poly Batteries with Shunt Charger, in J. Analog Innovation,
vol. 20, no. 3, 2010.
[6] Berger, A., H¨ormann, L. B., Leitner, C. et al., Sustainable
energy harvesting for robust wireless sensor networks in industrial
applications, in IEEE Sensors Applications Symposium (SAS) pp. 1-6,
doi:10.1109/SAS.2015.7133585, 2015.
[7] Cahill, P., O’Keeffe, R., et al. Structural Health Monitoring of Reinforced
Concrete Beam Using Piezoelectric Energy Harvesting System, 7th
European Workshop on Structural Health Monitoring, pp. 189-196,
hal-01020338, 2014.
[8] Challa, V. R., Prasad, M. G., Shi, Y. et al., A vibration energy
harvesting device with bidirectional resonance frequency tunability,
in Smart Materials and Structures, vol. 17, no. 1, pp. 1-10,
doi:10.1088/0964-1726/17/01/015035, 2008.
[9] Chen, S., Wang, L., Jiang, et al., A study on reliability of
chip scale packages in shock environments, in Proc. 14th Int.
Conf. Electronic Packaging Technology (ICEPT), pp. 921-924,
doi:10.1109/ICEPT.2013.6756611, 2013.
[10] Cho, K., Jung, C., Kim, J. et al., Modelnig and analysis of performance
based on Bluetooth Low Energy, in 7th IEEE Latin-American Conf.
Communications (LATINCOM), pp. 1-6, ISBN 978-1-4673-8450-6,
doi:10.1109/LATINCOM.2015.7430115, 2015.
[11] Dekegel, T., Ontwikkeling van een testbed voor pi¨ezo-elektrische
energy harvesters, Master thesis, unpublished, Vrije Universiteit Brussel,
Brussels, Belgium, 2015.
[12] Deng, L., Wen, Z., et al., High Voltage Output MEMS
Vibration Energy Harvester in Mode With PZT Thin Film, in J.
Microelectromechanical Systems, vol. 23, no. 4, pp. 855-861, ISSN
1057-7157, doi:10.1109/JMEMS.2013.2296034, 2014.
[13] Erturk, A., HOffmann, J., Inman, D. J., A piezomagnetoelastic structure
for broadband vibration energy harvesting, in Applied Physics Letters,
vol. 94, no. 25, doi:10.1063/1.3159815, 2009.
[14] Galinina, O., Mikhaylov, K., Andreev, S. et al., Internet of
Things, Smart Spaces, and Next Generation Networks and Systems:
Wireless Sensor Network Based Smart Home System over BLE with
Energy Harvesting Capability, Springer, vol. 8638, pp. 419-432,
doi:10.1007/978-3-319-10353-2 37, 2014.
[15] Green, P. L., Papatheou, E. and Sims, N. D., Energy harvesting
from human motion and bridge vibrations: An evaluation of
current nonlinear energy harvesting solutions, in J. Intelligent
Material Systems and Structures, vol. 24, no. 12, pp. 1494-1505,
doi:10.1177/1045389X12473379, 2013.
[16] Grover, M., Pardeshi, S. K., Singh, N., et al., Bluetooth low energy
for industrial automation, in Proc. 2nd Int. Conf. Electronics
and Communication Systems (ICECS), pp. 512-215, ISBN
978-1-4799-7224-1, doi:10.1109/ECS.2015.7124960, 2015.
[17] Hadas, Z., Vetiska, V., Huzlik, R. et al., Model-based design
and test of vibration energy harvester for aircraft application, in
Microsystem Technologies, vol. 20, no. 4, pp. 831-843, ISSN 0946-7076,
doi:10.1007/s00542-013-2062-y, 2014.
[18] He, Q., Mao, X., Chu, D., Output Performance Analysis on a
Two-degrees-of-Freedom Bistable Piezoelectric Vibration Generator, Int.
J. Online Engineering, vol. 11, no. 6, 2015.
[19] Huang, Q. and Chen, K., The Implementation of a Wireless Scale Based
on Bluetooth 4.0 Low-energy, in Proc. 2015 Int. Industrial Informatics
and Computer Engineering Conf. (IIICEC), Atlantis Press, 2015.
[20] Hull, M. D., Eng., C., Building Hi-Fi Speaker Systems, Philips, 1980.
[21] Jaafar, I. S. S. A. and Czarnecki, Z., Miniaturized low cost wireless
data logger for vibration recording of physiological activities, in IEEE
Sensors, pp. 1-4, ISSN 1930-0395, doi:ICSENS.2013.6688256, 2013.
[22] Jones, M. H. and Scott, J. B., The Energy Efficiency of 8-bit Low-power
Microcontrollers, in Proc. 18th Electronics New Zealand Conf. 2011.
[23] Korla, S., Leon, R. A., Tansei, I. N. et al., Design and
testing of an efficient and compact piezoelectric energy
harvester, in J. Microelectronics, vol. 42, no. 2, pp. 265-270,
doi:10.1016/j.mejo.2010.10.018, 2011.
[24] Krishna, B. J. and Vadivukkarasi, K., Energy Efficient Lightening System
for an Indoor Environmnet using Wireless Sensor Network Based on IoT,
in Int. J. Research and Scientific Innovation (IJRSI), vol. 3, no. 5, pp.
144-148, ISSN 2321-2705, 2016.
[25] Kulah, H. and Najafi, K., Energy Scavenging From Low-Frequency
Vibrations by Using Frequency Up-Conversion for Wireless Sensor
Applications, in IEEE Sensors J., vol. 8, no. 3, pp. 261-268, ISSN
1530-437X, doi:10.1109/JSEN.2008.917125, 2008.
[26] Leland, E. S., and Wright, P. K., Resonance tuning of piezoelectric
vibration energy scavenging generators using compressive axial preload,
in Smart Materials and Structures, vol. 15, no. 5, pp. 1413-1420,
doi:10.1088/0964-1726/15/5/030, 2006.
[27] Liu, J.-Q., Fang, H.-B., Xu, Z.-Y. et al., A MEMS-based
piezoelectric power generator array for vibration energy
harvesting, in J. Microelectronics, vol. 39, no. 5, pp. 802-806,
doi:10.1016/j.mejo.2007.12.017, 2008.
[28] Mackensen, E., Lai, M., Wendt, T. M., Bluetooth Low Energy (BLE)
based wireless sensors, in IEEE Sensors, pp. 1-4, ISSN 1930-0395, ISBN
978-1-4577-1766-6, doi:10.1109/ICSENS.2012.6411303, 2012.
[29] Madgwick, S. O. H., Harrison, A. J. L., Sharkey, P. M., et al.,
Measuring motion with kinematically redundant accelerometer arrays:
Theory, simulation and implementation, in Mechatronics, vol. 23, no. 5,
pp. 518-529, doi:10.1016/j.mechatronics.2013.04.003, 2013.
[30] Miso, K., Hoegen, M., Dugundji, J. et al., Modeling and experimental
verification of proof mass effects on vibration energy harvester
performance, in Smart Materials and Structures, vol. 19, no. 4,
doi:10.1088/0964-1726/19/4/045023, 2010. [31] Nadee, C., Chamnongthai, K., Ultrasonic array sensors for monitoring
of human fall detection, in Proc. 12th Int. Conf. Electrical
Engineering/Electronics, Computer, Telecommunications and Information
Technology (ECTI-CON), pp. 1-4, doi:10.1109/ECTICon.2015.7207097
2015.
[32] Naik, A. G., Kuwelkar, S. and Magdum, V., Evaluation of
Classic Bluetooth Based On the Spectrums For Its Usability In
Industrial Applications, Int. J. Advanced Research in Electronics and
Communication Engineering (IJARECE), vol. 4, no. 3, 2015.
[33] Parker, J. S., Roberts, S. Vibration energy harvester for converting
mechanical vibrational energy into electrical energy, U.S. Patent No.
8,680,694, 2014.
[34] Penella, M., Albesa, J., Gasulla, M., Powering wireless sensor nodes:
primary batteries versus energy harvesting, in Proc. IEEE Instrumentation
and Measurement Technology Conf. (I2MTC), pp. 1625-1630, ISBN
978-1-42443353-7, 2009.
[35] Ren, L., Chen, R., Xia, H. et al., Energy harvesting performance
of a broadband electromagnetic vibration energy harvester for
powering industrial wireless sensor networks, in Proc. SPIE 9799,
Active and Passive Smart Structures and Integrated Systems, 97993P,
doi:10.1117/12.2218736, 2016.
[36] Sharma, M., Agarwal, N., Reddy, S. R. N., Design and development
of daughter board for USB-UART communication between Raspberry
Pi and PC, in Proc. Int. Conf. Computing, Communication &
Automation (ICCCA), pp. 944-948, ISBN 978-1-4799-8889-1,
10.1109/CCAA.2015.7148532, 2015.
[37] Shieh, P. J., Azana, N. T., Santos, T. E. A., et al., Methodology for
choosing piezoelectric devices, in Proc. IEEE Brasil RFID, pp. 46-49,
ISBN 978-1-4799-7045-2, doi:10.1109/BrasilRFID.2014.7128963, 2014.
[38] Singh, K., Awasthi, A. K., Quality, Reliability, Security and Robustness
in Heterogenous Networks, 9th Int. Conf. QShine 2013: Revised Selected
Papers, 1011 p., Springer, 2013.
[39] Sodano, H. A., Inman, D. J., Comparison of Piezoelectric Energy
Harvesting Devices for Recharging Batteries, in J. Intelligent
Material Systems and Structures, vol. 16, no. 10, pp 799-807,
doi:10.1177/1045389X05056681, Los Alamos National Laboratory, 2005.
[40] Sodano, H. A., Park, G. and Inman, D. J., Estimation of Electric Charge
Output for Piezoelectric Energy Harvesting, in Strain, vol. 40, pp. 49-58,
doi:10.1111/j.1475-1305.2004.00120.x, 2004.
[41] ST Microelectronics, 10W Car Radio Audio Amplifier, ST
Microelectronics, datasheet, 2013.
[42] Tang, X., Lin, T., Zuo, L, Design and optimization of a
tubular linear electromagnetic vibration energy harvester, IEEE
Transactions on Mechatronics, vol. 19, no. 2, pp. 615-622,
doi:10.1109/TMECH.2013.2249666, 2014.
[43] Verbelen, Y., Touhafi, A., Resource Considerations for Durable Large
Scale Renewable Energy Harvesting Applications, in Proc. 2nd Int. Conf.
Renewable Energy Research and Applications (ICRERA), pp. 401-406,
doi:10.1109/ICRERA.2013.6749788, 2013.
[44] Verbelen, Y., Braeken, A., Touhafi, A., Parametrization of Ambient
Energy Harvesters for Complementary Balanced Electronic Applications,
in Proc. SPIE 8763, Smart Sensors, Actuators, and MEMS VI, 87631U,
doi:10.1117/12.2018490, 2013.
[45] Verbelen, Y., Braeken, A., Touhafi, A., Towards a complementary
balanced energy harvesting solution for low power embedded systems,
in Microsystem Technologies, vol. 20, no. 4, pp. 1007-1021,
doi:10.1007/s00542-014-2103-1, 2014.
[46] Volcko, T., Moucha, V., Kan, V., A Wireless Communication Interfaces
for Small Unmanned Systems, in Proc. Int. Scientific Conf. Modern Safety
Technologies in Transportation, pp. 200-205, ISSN 1338-5232, 2015.
[47] Whitaker, M., Energy Harvester Produces Power from Local
Environment, Eliminating Batteries in Wireless Sensors, in J. Analog
Innovation, vol. 20, no. 1, 2010.
[48] Yang, B., Lee, C., Xiang, W. et al., Electromagnetic energy ahrvesting
from vibrations of multiple frequencies, in J. Micromechanics and
Microengineering, vol. 19, no. 3, doi:10.1088/0960-1317/19/3/035001,
2009.
[49] Yang, W., Chen, J., Zhu, G. et al., Harvesting Energy from the
Natural Vibration of Human Walking, in ACS Nano, vol. 7, no. 12, pp.
11317-11324, doi:10.1021/nn405175z, 2013.
[50] Zuo, L. and Tang, X., Large-scale vibration energy harvesting, in
J. Intelligent Material Systems and Structures, vol. 24, no. 11, pp.
1405-1430, doi:10.1177/1045389X13486707, 2013.