Numerical Investigation of Thermally Triggered Release Kinetics of Double Emulsion for Drug Delivery Using Phase Change Material

A numerical model has been developed to investigate the thermally triggered release kinetics for drug delivery using phase change material as shell of microcapsules. Biocompatible material n-Eicosane is used as demonstration. PCM shell of microcapsule will remain in solid form after the drug is taken, so the drug will be encapsulated by the shell, and will not be released until the target body part of lesion is exposed to external heat source, which will thermally trigger the release kinetics, leading to solid-to-liquid phase change. The findings can lead to better understanding on the key effects influencing the phase change process for drug delivery applications. The facile approach to release drug from core/shell structure of microcapsule can be well integrated with organic solvent free fabrication of microcapsules, using double emulsion as template in microfluidic aqueous two phase system.





References:
[1] A. Madene, M. Jacquot, J. Scher, and S. Desobry, “Flavour encapsulation
and controlled release – a review,”Int. J. Food Sci. Technol.vol.41, no.1,
pp.1-21, 2006.
[2] D. J. McClements, E. A. Decker, and J. Weiss, “Emulsion-based delivery
systems for lipophilic bioactive components,” J. Food Sci.vol.72,
pp.109-124, 2007.
[3] R. Karnik , F. Gu , P. Basto , C. Cannizzaro , L. Dean , W. Kyeimanu, R.
Langer, and O.C. Farokhzad, “Microfluidic platform for controlled
synthesis of polymeric nanoparticles,”NanoLett.vol.8, no.9, pp. 2906,
2008.
[4] K. Saskia, L. Peter, S. Ute, and N. Hiroshi, Fragrance Journal, vol.33, pp.
51, 2005.
[5] M. J. McShane, J. Q. Brown, K. B. Guice, and Y. M. Lvov,
“Polyelectrolyte Microshells as Carriers for Fluorescent Sensors: Loading
and Sensing Properties of a Ruthenium-Based Oxygen Indicator,”
Nanoscience and Nanotechnology, vol.2, pp. 411-416, 2002.
[6] L. I. Kazakova , L. I. Shabarchina, G. B. Sukhorukov,“Co-encapsulation
of enzyme and sensitive dye as a tool for fabrication of microcapsule
based sensor for urea measuring,” Phys. Chem.Chem. Phys.vol.13,
pp.11110, 2011.
[7] S. L. Poe, M. Kobaslija, and D. T. McQuade, “Mechanism and
application of a microcapsule enabled multicatalyst reaction,” J. Am.
Chem. Soc. vol.129, pp.9216, 2007.
[8] C. Ramaraoa, S. V. Ley, S. C. Smith, I. M. Shirley, and N. DeAlmeidac,
“Polyurea encapsulated palladium acetate: a robust and recyclable
catalyst for use in conventional and supercritical media,” Chem. Commun.
vol.13, pp.1132, 2002.
[9] J. Sheng, “Modern Chemical Enhanced Oil Recovery: Theory and
Practice,” Gulf Professional Publishing, 2010.
[10] C. H. Choi , J. H. Jung , D. W. Kim , Y. M. Chung, and C. S. Lee, “Novel
one-pot route to monodisperse thermosensitive hollow microcapsules in a
microfluidic system,” Lab Chipvol.8, pp.1544, 2008.
[11] B. G. De Geest, A. G. Skirtach, A. A. Mamedov, A. A. Antipov, N. A.
Kotov, S. C. De Smedt, and G. B. Sukhorukov, “Ultrasound-triggered
release from multilayered capsules,” Small, vol.3, pp.804, 2007.
[12] T. He , K. Zhang , X. Mu , T. Luo , Y. Wang , and G. Luo, “A modified
microfluidic chip for fabrication of paclitaxel-loaded poly (l-lactic acid)
microspheres,” Microfluid. Nanofluid. vol.10, pp.1289, 2011.
[13] K. Bouchemal, S. Briancon , E. Perrier, H. Fessi , I. Bonnet, andN.
Zydowicz, “Synthesis and characterization of polyurethane and
poly(ether urethane) nanocapsules using a new technique of interfacial
polycondensation combined to spontaneous emulsification,”Int. J. Pharm,
vol. 269, pp.89, 2004.
[14] T. Dobashi, F. J. Yeh, Q. C. Ying, K. Ichikawa, and B. Chu,
“Experimental Investigation on the Structure of Microcapsules,”
Langmuir, vol.11, pp.4278, 1995.
[15] A. Loxley, and B. Vincent, “Preparation of Poly(methylmethacrylate)
Microcapsules with Liquid Cores.,” J. Colloid Interface Sci., vol.208,
pp.49, 1998.
[16] P. J. Dowding, R. Atkin, B. Vincent, and P. Bouillot, “Oil core-polymer
shell microcapsules prepared by internal phase separation from emulsion
droplets. I. Characterization and release rates for microcapsules with
polystyrene shells,” J. Am. Chem. Soc.vol.20, pp.11374, 2004.
[17] R. Bocanegra , A. G. Gaonkar , A. Barrero , I. G. Loscertales ,D. Pechack ,
and M. Marquez, “Production of Cocoa Butter Microcapsules Using an
Electrospray Process,” Journal of Food Science, vol.70, pp.8, 2005.
[18] H. Chen, Y. Zhao, Y. Song, and L. Jiang, “One-step multicomponent
encapsulation by compound-fluidic electrospray,” J. Am. Chem. Soc.,
vol.130, pp.7800, 2008.
[19] S. S. Datta, A. Abbaspourrad, E. Amstad, J. Fan, S. Kim, M.
Romanowsky, H.C. Shum, B. Sun, A. S. Utada, M. Windbergs, S. Zhou,
D. A. Weitz, “Double Emulsion Templated Solid Microcapsules:
Mechanics And Controlled Release,” Advanced Materials, vol.26, no.14,
pp.2205, 2014.
[20] C. Berkland, M. King, A. Cox, K. Kim, D. Pack, “Precise control of PLG
microspheresize provides enhanced control of drug release rate,” J
Control Release, vol.82, pp.137–47, 2002.
[21] D. Klose, F. Siepmann, K. Elkharraz, S. Krenzlin, and J. Siepmann, “How
porosity and size affect the drug release mechanisms from PLGA-based
microparticles,”Int JPharm, vol.314, pp.198–206, 2006.
[22] A. Budhian, S.J. Siegel, and K.I. Winey, “Haloperidol-loaded PLGA
nanoparticles: systematic study of particle size and drug content,” Int. J.
Pharm.vol.336, pp.367–75, 2007.
[23] G. J. S. Dawes, L. Fratila-Apachitei, K. Mulia, I. Apachitei, G. J.
Witkamp, J. Duszczyk, “Size effect of PLGA spheres on drug loading
efficiency and release profiles,”J Mater Sci – Mater Med, vol.20,
pp.1089–94, 2009.
[24] G.M. Whitesides, “The origins and the future of microfluidics,” Nature,
vol. 442, no.7101, pp.368-373, 2006.
[25] H.C. Shum, D. Lee, I. Yoon, T. Kodger and D.A. Weitz, “Double
Emulsion-Templated Monodisperse Phospholipid Vesicles,” Langmuir,
vol. 24, pp.7651–7653, 2008.
[26] C.I. Zoldesi, P. Steegstra and A. Imhof, “Encapsulation of emulsion
droplets by organo-silica shells,” J. Colloid Interface Sci., vol.308, pp.
121–129, 2007.
[27] Y. Ren, Z. Liu and H.C. Shum, “Breakup dynamics and
dripping-to-jetting transition in a Newtonian/shear-thinning multiphase
microsystem," Lab Chip, vol.15, no.1, pp.121 – 134, 2015.
[28] S. H. Kim , J. W. Kim , J. C. Cho , and D. A. Weitz,“Double-emulsion
drops with ultra- thin shells for capsule templates,” Lab Chip, vol.11,
pp.3162, 2011.
[29] S. Zhou, J. Fan, S. S. Datta, M. Guo, X. Guo, and D. A. Weitz,
“Thermally switched release from nanoparticle colloidosomes,” Adv.
Func. Mater., vol.23, pp.5925, 2013.
[30] A. Abbaspourrad, N. J. Carroll, S. H. Kim, and D. A. Weitz, “Polymer
microcapsules with programmable active release,” J. Am. Chem.Soc.,
vol.135, pp.7744, 2013.
[31] Y. Song, A. Sauret, and H. C. Shum, “All-aqueous multiphase
microfluidics,” Biomicrofluidics, vol.7, pp.061301, 2013.
[32] R. Sabbah, M. M. Farid, and S. Al-Hallaj, “Micro-channel Heat Sink with
Slurry of Water with Micro-encapsulated Phase Change Material:
3D-Numerical Study,” Applied Thermal Engineering, vol. 29, no. 2-3, pp.
445-454, 2009.
[33] B. Chen, X. Wang, R. Zeng, Y. Zhang, X. Wang et al., “An Experimental
Study of Convective Heat Transfer with Microencapsulated Phase
Change Material Suspension: Laminar Flow in a Circular Tube under
Constant Heat Flux,” Experimental Thermal Fluid Science, vol. 32, pp.
1638-1646, 2008.