Novel PES Membrane Reinforced by Nano-WS2 for Enhanced Fouling Resistance

Application of nanoparticles as additives in membrane
synthesis for improving the resistance of membranes against fouling
has triggered recent interest in new membrane types. However, most
nanoparticle-enhanced membranes suffer from the tradeoff between
permeability and selectivity. In this study, nano-WS2 was explored as
the additive in membrane synthesis by non-solvent induced phase
separation. Blended PES-WS2 flat-sheet membranes with the
incorporation of ultra-low concentrations of nanoparticles (from 0.025
to 0.25%, WS2/PES ratio) were manufactured and investigated in
terms of permeability, fouling resistance and solute rejection.
Remarkably, a significant enhancement in the permeability was
observed as a result of the incorporation of ultra-low fractions of
nano-WS2 to the membrane structure. Optimal permeability values
were obtained for modified membranes with 0.10%
nanoparticle/polymer concentration ratios. Furthermore, fouling
resistance and solute rejection were significantly improved by the
incorporation of nanoparticles into the membrane matrix. Specifically,
fouling resistance of modified membrane can increase by around 50%.





References:
<p>[1] M.T.M. Pendergast, E.M.V. Hoek, Energy Environ. Sci. 4 (2011)
1946-1971.
[2] J. Kim, B. Van der Bruggen, Environ. Pollut. 158 (2010) 2335-2349.
[3] F. Peng, L. Lu, H. Sun, Y. Wang, J. Liu, Z. Jiang, Chem. Mater. 17 (2005)
6790-6796.
[4] A. Walcarius, Chem. Mater. 13 (2001) 3351-3372.
[5] H. Basri, A. F. Ismail, M. Aziz, Desalination 287 (2012) 71-77.
[6] L.Y. Ng, A.W. Mohammad, C.P. Leo, N. Hilal, Desalination 308 (2013)
15-33.
[7] P. Jian, H. Yahui, W. Yang and L. Linlin. J. Membr. Sci. 284 (2006) 9-16.
[8] E. Celik, L. Liu, H. Choi, Water Res. 45 (2011) 5287-5294.
[9] Y.Q. Zhu, T. Sekine, Y.H. Li, M.W. Fay, Y.M. Zhao, C.H.P. Poa, W.X.
Wang, M.J. Roe, P.D. Brown, N. Fleischer, R. Tenne, J. Am. Chem. Soc.
127 (2005) 16263-16272.
[10] Y.Q. Zhu, T. Sekine, Y. H. Li, W.X. Wang, M.W. Fay, H. Edwards, P.D.
Brown, N. Fleischer, R. Tenne, Adv. Mater. 17 (2005) 1500-1503.
[11] A.M. D&iacute;ez-Pascua, M. Naffakh, C. Marco, G. Ellis, M.A. G&oacute;mez-Fatou,
Prog. Mater. Sci. 57 (2012) 1106-1190.
[12] M. Naffakh, A.M. D&iacute;ez-Pascua, M.A. G&oacute;mez-Fatou, J. Mater. Chem. 21
(2011) 7425-7433.
[13] A. Margolin, R. Rosentsveig, A. Albu-Yaron, R. Popovitz-Biro, R.
Tenne, J. Mater. Chem. 14 (2004) 617-624.
[14] C. Shahar, D. Zbaida, L. Rapoport, H. Cohen, T. Bendikov, J. Tannous,
Langmuir 26 (2010) 4409-4414.
[15] D. Jermann, W. Pronk, S. Meylan, M. Boller, Water Res. 41 (2007)
1713-1722.
[16] H. Huang, K. Schwab, J.G. Jacangelo, Environ. Sci. Technol. 43 (2009)
3011-3019.
[17] Y. Lu, S.L. Yu, B.X. Chai, X.D. Shun, J. Membr. Sci. 276 (2006)
162-167.</p>