Nonlinear Absorption and Scattering in Wide Band Gap Silver Sulfide Nanoparticles Colloid and Their Effects on the Optical Limiting

In this paper, we study the optical nonlinearities of Silver sulfide (Ag2S) nanostructures dispersed in the Dimethyl sulfoxide (DMSO) under exposure to 532 nm, 15 nanosecond (ns) pulsed laser irradiation. Ultraviolet–visible absorption spectrometry (UV-Vis), X-ray diffraction (XRD), and transmission electron microscopy (TEM) are used to characterize the obtained nanocrystal samples. The band gap energy of colloid is determined by analyzing the UV–Vis absorption spectra of the Ag2S NPs using the band theory of semiconductors. Z-scan technique is used to characterize the optical nonlinear properties of the Ag2S nanoparticles (NPs). Large enhancement of two photon absorption effect is observed with increase in concentration of the Ag2S nanoparticles using open Zscan measurements in the ns laser regime. The values of the nonlinear absorption coefficients are determined based on the local nonlinear responses including two photon absorption. The observed aperture dependence of the Ag2S NP limiting performance indicates that the nonlinear scattering plays an important role in the limiting action of the sample. The concentration dependence of the optical liming is also investigated. Our results demonstrate that the optical limiting threshold decreases with increasing the silver sulfide NPs in DMSO.




References:
[1] Sendhil K., Vijayan C., Kothiyal M. P. (2006). “Low-threshold optical
power limiting of cw laser illumination based on nonlinear refraction in
zinc tetraphenyl porphyrin”. Opt Laser Technol 38, 512-515.
[2] Yu B., Zhu C., Gan F., Huang Y. (1997). “Optical limiting properties of
In2O3 nanoparticles under cw laser illumination”, Opt Mater 7, 103-107.
[3] Li Q. S., Liu C. L., Liu Z. G., and Gong Q. H., (2005). “Broadband
optical limiting and two-photon absorption properties of colloidal GaAs
nanocrystals,” Opt. Express 13, 1833–1838.
[4] Venkatram N., Kumar R. S. S., and Rao D. N., (2006). “Nonlinear
absorption and scattering properties of cadmium sulphide nanocrystals
with its application as a potential optical limiter,” J. Appl. Phys. 100,
074309–1–8.
[5] Yong G. S. He, K. T., Zheng Q. D., Sahoo Y., Baev A., Ryasnyanskiy
A. I., and Prasad P. N., (2007). “Multi-photon excitation properties of
CdSe quantum dots solutions and optical limiting behavior in infrared
range,” Opt. Express 15, 12818–12833.
[6] Tutt L. W. and Boggess T. F., (1993). “A review of optical limiting
mechanisms and devices using organics, fullerenes, semiconductors and
other materials” Prog. Quantum Electron. 17, 299.
[7] Li Q., Liu C., Gong L., Yu X. and Cao C., (2008). “Nonlinear scattering,
absorption and refraction processes in the colloidal suspensions of Bi2S3
and CuS nanoparticles and their combined effects for broadband optical
limiting” J. Opt. Soc. Am. 25, 1978-1983.
[8] Padilha L. A., Fu J., Hagan D. J., Van Stryland E. W., Cesar C. L.,
Barbosa L. C., Cruz C. H. B., Buso D., and Martucci A., (2007).
“Frequency degenerate and nondegenerate twophoton absorption spectra
of semiconductor quantum dots,” Phys. Rev. B 75, 075325.
[9] Whelan A. M., Benrezzak S., Brennan M. E., Kelly J. M., and Blau W.
J., (2003). “Nonlinear optical properties of metal and semiconductor
nanoparticles,” Proc. SPIE 4876, 1257–1264.
[10] Ganeev R. A., Baba M., Morita M., Rau D., Fujii H., Ryasnyansky A. I.,
Ishizawa N., Suzuki M., and Kuroda H., (2004). “Nonlinear optical
properties of CdS and ZnS nanoparticles doped into zirconium oxide
films,” J. Opt. A, Pure Appl. Opt. 6, 447–453.
[11] Pan L. Y., Tamai N., Kamada K., and Deki S., (2007). “Nonlinear
optical properties of thiol-capped CdTe quantum dots in nonresonant
region,” Appl. Phys. Lett. 91, 051902.
[12] Padilha L. A., Fu J., Hagan D. J., Van Stryland E. W., Cesar C. L.,
Barbosa L. C., Cruz C. H. B., Buso D., and Martucci A., (2007).
“Frequency degenerate and nondegenerate twophoton absorption spectra
of semiconductor quantum dots,” Phys. Rev. B 75, 075325.
[13] Karimzadeh R., Aleali H., Mansour N., (2011) Thermal nonlinear
refraction properties of Ag2S semiconductor nanocrystals with its
application as a low power optical limiter R. Karimzadeh, H. Aleali, N.
Mansour, Optics Communications 284 2370–2375.
[14] Liao Z. M., Hou C., Zhang H. Z., Wang D. S. and Yu D. P., (2010). ”
Evolution of resistive switching over bias duration of single Ag2S
nanowires”, Appl. Phys. Lett 96, 109.
[15] Xie Y., Heo S. H., Kim Y. N., Yoo S. H. and Cho S. O., (2010).
“Synthesis and visible-light-induced catalytic activity of Ag2S-coupled
TiO2 nanoparticles and nanowires”, Nanotechnology 21, 015703.
[16] Brelle M. C., Zhang J. Z., Nguyen L. and Mehra R. K., (1999). Synthesis
and Ultrafast Study of Cysteine- and Glutathione-Capped Ag2S
Semiconductor Colloidal Nanoparticles. J. Phys. Chem. A 103, 10194.
[17] Karimzadeh R., Mansour N., (2010). Thermo-optic nonlinear response
of silver nanoparticle colloids under a low power laser irradiation at
532 nm. Phys. Status Solidi B 247, 365.
[18] Sarkhosh L., Aleali H., Karimzadeh R., Mansour N., (2010) "Large
thermally induced nonlinear refraction of gold nanoparticles stabilized
by cyclohexanone", Phys. Status Solidi A 207, No. 10, 2303–2310.
[19] Anthony S. P., (2009). “Synthesis of Ag2S and Ag2Se nanoparticles in
self assembled block copolymer micelles and nano-arrays fabrication”
Mater. Lett. 63, 773-776.
[20] Sheik-bahae M., Said A. A., Wei T. H., Hagan D. J., Van stryland E. W.,
(1990). Sensitive measurement of optical nonlinearities using a single
beam. IEEE J. Quantum Electron. 26, 760.